Resources for Node Owners & Users

Instrumentation

IRIS maintains a pool of FairfieldNodal Zland 3-C 5Hz nodes at the PASSCAL Instrument Center that are available for community use.  For detailed information about this specific model of node, please visit the PASSCAL node instrumentation page linked below.   As other vendor “nodes” are evaluated, we will post specifications in additional links.

Relevant Links:
PASSCAL Node Instrumentation webpage
 

IRIS-supported Nodal Experiments

Beginning with the IRIS-led Wavefield Community Demonstration Experiment IRIS has supported a variety of experiments that have deployed nodes.

For an up-to-date list of experiments that have used IRIS/PASSCAL nodes, please visit this link.

Please note that this list includes both completed and scheduled (funded) experiments that have included nodes as part or all of their instrumentation requests.  This list does not indicate any community owned nodes that may have been contributed.
 

Community Node Owners

In addition to the IRIS/PASSCAL pool of nodes, several community members have purchased their own sets of nodes.  Below is a partial list of node owners who have consented to have their names and contact info listed on this page.

Organization Type Number Contact
IRIS/PASSCAL Fairfield Nodal
Zland 3C 5Hz
63 general,
200 polar (GEOICE)
passcal.nmt.edu
University of Utah Fairfield Nodal
Zland 3C 5Hz
112 nodes Fan-Chi Lin
University of Oklahoma Fairfield Nodal
Zland 3C 5Hz
72 nodes Nori Nakata
National Central University (Taiwan) Fairfield Nodal
Zland 3C 5Hz
45 nodes Hao Kuo-Chen
University of Oklahoma Fairfield Nodal
Zland 3C 5Hz
60 nodes Michael Behm
University of Texas at El Paso Fairfield Nodal
Zland 3C 5Hz
51 nodes Marianne Karplus
Louisiana State University Fairfield Nodal
Zland 3C 5Hz
50 nodes geol.lsu.edu
University of Arizona Fairfield Nodal
Zland 3C 5Hz
96 nodes Eric Kiser

 

Node-Related Posters

IRIS has started collecting posters resulting from nodal experiments which you can find on this page:
http://www.iris.edu/hq/site/PAGE_static/5553

 

Node-Related Publications

An incomplete list of publications that analyze data collected with nodes.  If you know of a publication not on this list, please email justin.sweet@iris.edu.

Bowden, D.C., V.C. Tsai, F.-C. Lin (2015). Site Amplification, Attenuation and Scattering from Noise Correlation Amplitudes Across a Dense Array in Long Beach, Geophys. Res. Lett., 42: 1360–1367, doi: 10.1002/2014GL062662

Brenguier, F., P. Kowalski, N. Ackerley, N. Nakata, P. Boué, M. Campillo, E. Larose, S. Rambaud, C. Pequegnat, T. Lecocq, P. Roux, V. Ferrazzini, N. Villeneuve, N. M. Shapiro, J. Chaput (2015). Toward 4D Noise-Based Seismic Probing of Volcanoes: Perspectives from a Large-N Experiment on Piton de la Fournaise Volcano. Seismological Research Letters ; 87 (1): 15–25, doi: https://doi.org/10.1785/0220150173.

Fan, W and J. J. McGuire (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma, Geophysical Journal International, https://doi.org/10.1093/gji/ggy203.

Hansen, S. and B. Schmandt (2015). Automated Detection and Location of Microseismicity at Mount St. Helens with a Large-N Geophone Array. Geophysical Research Letters, doi: 10.1002/2015GL064848.

Hansen, S. M., B. Schmandt, A. Levander, E. Kiser, J. E. Vidale, G. A. Abers, and K. C. Creager (2016). Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature Communications, 7.

Inbal, A., J. P. Ampuero, R. W. Clayton (2016), Localized seismic deformation in the upper mantle revealed by dense seismic arrays, Science, 354, 88-92, doi: 10.1126/science.aaf1370.

Inbal, A., R. W. Clayton, and J.‐P. Ampuero (2015), Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth‐dependent earthquake size distribution, Geophys. Res. Lett., 42, 6314–6323, doi: 10.1002/2015GL064942.

Li, Z., Z. Peng, D. Hollis, L. Zhu, J. McClellan (2018), High-resolution seismic event detection using local similarity for Large-N arrays, Sci. Rep., 8(1), 1646. doi:10.1038/s41598-018-19728-w.

Lin, F.-C.,D. Li, R. W. Clayton, and D. Hollis (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array, Geophysics, 78(4), Q45-Q56, doi:10.1190/geo2012-0453.1.

Nakata, N., J. P. Chang, J. P., J. F. Lawrence, and P. Boué (2015). Body-wave extraction and tomography at Long Beach, California, with ambient-noise interferometry J. Geophys. Res., 120, 1159-1173.

Riahi, N and P. Gerstoft (2017), Using Graph Clustering to Locate Sources within a Dense Sensor Array, Signal Processing 132, March 2017, Pages 110–120, http://dx.doi.org/10.1016/j.sigpro.2016.10.001

Riahi, N., and P. Gerstoft (2015), The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, Geophys. Res. Lett., 42, doi:10.1002/2015GL063558.

Ringler, A. T., R. E. Anthony, M. S. Karplus, A. A. Holland, D. C. Wilson (2018). Laboratory Tests of Three Z-Land Fairfield Nodal 5-Hz, Three-Component Sensors. Seismological Research Letters, doi: https://doi.org/10.1785/0220170236.

Schmandt, B. and R. W. Clayton (2013). Analysis of teleseismic P-waves with a 5200-station array in Long Beach, California: evidence for an abrupt boundary to Inner Borderland rifting. J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50370.

Wang, Y., F.-C. Lin, B. Schmandt, J. Farrell (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array, J. Geophys. Res. Solid Earth, 122, doi:10.1002/ 2016JB013769.

Ward, K. M., and F. C. Lin (2017).  On the Viability of Using Autonomous Three‐Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to Old Faithful, Yellowstone. Seismological Research Letters ; 88 (5): 1268–1278, doi: 10.1785/0220170051.

Wu, S.-M., K. M. Ward, J. Farrell, F.-C. Lin, M. Karplus, and R. B. Smith (2017). Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin, Geophysical Research Letters, 44. doi:10.1002/2017GL075255.