Resources for Node Owners & Users

Instrumentation

IRIS maintains a pool of FairfieldNodal Zland 3-C 5Hz nodes at the PASSCAL Instrument Center that are available for community use.  For detailed information about this specific model of node, please visit the PASSCAL node instrumentation page linked below.   As other vendor “nodes” are evaluated, we will post specifications in additional links.

Relevant Links:
PASSCAL Node Instrumentation webpage
 

IRIS-supported Nodal Experiments

Beginning with the IRIS-led Wavefield Community Demonstration Experiment IRIS has supported a variety of experiments that have deployed nodes.

For an up-to-date list of experiments that have used IRIS/PASSCAL nodes, please visit this link.

Please note that this list includes both completed and scheduled (funded) experiments that have included nodes as part or all of their instrumentation requests.  This list does not indicate any community owned nodes that may have been contributed.

IRIS' current node use policy can be found over on the PASSCAL website at this link.
 

Community Node Owners

In addition to the IRIS/PASSCAL pool of nodes, several community members have purchased their own sets of nodes.  Below is a partial list of node owners who have consented to have their names and contact info listed on this page.

Organization Type Number Contact
IRIS/PASSCAL Fairfield Nodal
Zland 3C 5Hz
633* general,
200 polar (GEOICE)
passcal.nmt.edu
*As of Mar 2020
University of Utah Fairfield Nodal
Zland 3C 5Hz
112 nodes Fan-Chi Lin
University of Oklahoma Fairfield Nodal
Zland 3C 5Hz
132 nodes Michael Behm
National Central University (Taiwan) Fairfield Nodal
Zland 3C 5Hz
45 nodes Hao Kuo-Chen
University of Texas at El Paso Fairfield Nodal
Zland 3C 5Hz
51 nodes Marianne Karplus
University of Texas at El Paso Fairfield Nodal
Zland 3C 5Hz
50 nodes Julien Chaput
Louisiana State University Fairfield Nodal
Zland 3C 5Hz
50 nodes geol.lsu.edu
University of Arizona Fairfield Nodal
Zland 3C 5Hz
96 nodes Eric Kiser
University of Hawai‘i at Mānoa Fairfield Nodal
Zland 1C 5Hz
Zland 3C 5Hz

29 nodes
25 nodes
Niels Grobbe

 

Node-Related Posters

IRIS has started collecting posters resulting from nodal experiments which you can find here.

Node-Related Publications

An incomplete list of publications that analyze data collected with nodes.  If you know of a publication not on this list, please email justin.sweet@iris.edu.

Behm, M., Cheng, F., Patterson, A., & Soreghan, G. S. (2019). Passive processing of active nodal seismic data: estimation of VP∕VS ratios to characterize structure and hydrology of an alpine valley infill. Solid Earth, 10(4), 1337–1354, [url=https://doi.org/10.5194/se-10-1337-2019]https://doi.org/10.5194/se-10-1337-2019[/url]

Bowden, D.C., V.C. Tsai, F.-C. Lin (2015). Site Amplification, Attenuation and Scattering from Noise Correlation Amplitudes Across a Dense Array in Long Beach, Geophys. Res. Lett., 42: 1360–1367, doi: [url=https://doi.org/10.1002/2014GL062662]https://doi.org/10.1002/2014GL062662[/url]

Brenguier, F., P. Kowalski, N. Ackerley, N. Nakata, P. Boué, M. Campillo, E. Larose, S. Rambaud, C. Pequegnat, T. Lecocq, P. Roux, V. Ferrazzini, N. Villeneuve, N. M. Shapiro, J. Chaput (2015). Toward 4D Noise-Based Seismic Probing of Volcanoes: Perspectives from a Large-N Experiment on Piton de la Fournaise Volcano. Seismological Research Letters ; 87 (1): 15–25, doi: https://doi.org/10.1785/0220150173.

Dougherty, S. L., Cochran, E. S., & Harrington, R. M. (2019). The LArge‐n Seismic Survey in Oklahoma (LASSO) Experiment, Seismological Research Letters, [url=https://doi.org/10.1785/0220190094]https://doi.org/10.1785/0220190094[/url].

Fan, W and J. J. McGuire (2018). Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma, Geophysical Journal International, [url=https://doi.org/10.1093/gji/ggy203]https://doi.org/10.1093/gji/ggy203[/url].

Farrell, J., S‐M. Wu, K. Ward, F‐C. Lin (2018).  Persistent Noise Signal in the FairfieldNodal Three‐Component 5‐Hz Geophones. Seismological Research Letters, doi: [url=https://doi.org/10.1785/0220180073]https://doi.org/10.1785/0220180073[/url].

Hansen, S. and B. Schmandt (2015). Automated Detection and Location of Microseismicity at Mount St. Helens with a Large-N Geophone Array. Geophysical Research Letters, doi: [url=https://doi.org/10.1002/2015GL064848]https://doi.org/10.1002/2015GL064848[/url].

Hansen, S. M., Schmandt, B., Levander, A., Kiser, E., Vidale, J. E., Abers, G. A., & Creager, K. C. (2016). Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. Nature Communications, 7, 13242, doi: [url=https://doi.org/10.1038/ncomms13242]https://doi.org/10.1038/ncomms13242[/url].

Inbal, A., J. P. Ampuero, R. W. Clayton (2016), Localized seismic deformation in the upper mantle revealed by dense seismic arrays, Science, 354, 88-92, doi: [url=https://doi.org/10.1126/science.aaf1370]https://doi.org/10.1126/science.aaf1370[/url].

Inbal, A., R. W. Clayton, and J.‐P. Ampuero (2015), Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth‐dependent earthquake size distribution, Geophys. Res. Lett., 42, 6314–6323, doi: [url=https://doi.org/10.1002/2015GL064942]https://doi.org/10.1002/2015GL064942[/url].

Langston, C. A., & Mousavi, S. M. (2019). Separating Signal from Noise and from Other Signal Using Nonlinear Thresholding and Scale‐Time Windowing of Continuous Wavelet Transforms, Bulletin of the Seismological Society of America, [url=https://doi.org/10.1785/0120190073]https://doi.org/10.1785/0120190073[/url].

Li, F., Y. Qin and W. Song (2019).  Waveform Inversion-Assisted Distributed Reverse Time Migration for Microseismic Location. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: [url=https://doi.org/10.1109/JSTARS.2019.2904206]https://doi.org/10.1109/JSTARS.2019.2904206[/url].

Li C., Z. Li, Z. Peng, C. Zhang, N. Nakata, and T. Sickbert (2018).  Long‐Period Long‐Duration Events Detected by the IRIS Community Wavefield Demonstration Experiment in Oklahoma: Tremor or Train Signals?. Seismological Research Letters, doi: [url=https://doi.org/10.1785/02201080081]https://doi.org/10.1785/02201080081[/url].

Li, Z., Z. Peng, D. Hollis, L. Zhu, J. McClellan (2018). High-resolution seismic event detection using local similarity for Large-N arrays, Sci. Rep., 8(1), 1646. doi: [url=https://doi.org/10.1038/s41598-018-19728-w]https://doi.org/10.1038/s41598-018-19728-w[/url].

Lin, F.-C.,D. Li, R. W. Clayton, and D. Hollis (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array, Geophysics, 78(4), Q45-Q56, doi: [url=https://doi.org/10.1190/geo2012-0453.1]https://doi.org/10.1190/geo2012-0453.1[/url].

Nakata, N., J. P. Chang, J. P., J. F. Lawrence, and P. Boué (2015). Body-wave extraction and tomography at Long Beach, California, with ambient-noise interferometry J. Geophys. Res., 120, 1159-1173, doi: [url=https://doi.org/10.1002/2015JB011870]https://doi.org/10.1002/2015JB011870[/url].

Riahi, N and P. Gerstoft (2017), Using Graph Clustering to Locate Sources within a Dense Sensor Array, Signal Processing 132, March 2017, Pages 110–120, [url=https://doi.org/10.1016/j.sigpro.2016.10.001]https://doi.org/10.1016/j.sigpro.2016.10.001[/url]

Riahi, N., and P. Gerstoft (2015), The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, Geophys. Res. Lett., 42, doi: [url=https://doi.org/10.1002/2015GL063558]https://doi.org/10.1002/2015GL063558[/url].

Ringler, A. T., R. E. Anthony, M. S. Karplus, A. A. Holland, D. C. Wilson (2018). Laboratory Tests of Three Z-Land Fairfield Nodal 5-Hz, Three-Component Sensors. Seismological Research Letters, doi: [url=https://doi.org/10.1785/0220170236]https://doi.org/10.1785/0220170236[/url].

Schmandt, B. and R. W. Clayton (2013). Analysis of teleseismic P-waves with a 5200-station array in Long Beach, California: evidence for an abrupt boundary to Inner Borderland rifting. J. Geophys. Res. Solid Earth, 118, doi: [url=https://doi.org/10.1002/jgrb.50370]https://doi.org/10.1002/jgrb.50370[/url].

Sweet, J. R., K. Anderson, S. Bilek, M. Brudzinski, X. Chen, H. DeShon, C. Hayward, M. Karplus, K. Keranen, C. Langston, F‐C. Lin, M. Beatrice Magnani, and R. Woodward (2018).  A Community Experiment to Record the Full Seismic Wavefield in Oklahoma. Seismological Research Letters, doi: [url=https://doi.org/10.1785/0220180079]https://doi.org/10.1785/0220180079[/url].

Wang, Y., F.-C. Lin, B. Schmandt, J. Farrell (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array, J. Geophys. Res. Solid Earth, 122, doi: [url=https://doi.org/10.1002/2016JB013769]https://doi.org/10.1002/2016JB013769[/url].

Ward, K. M., and F. C. Lin (2017).  On the Viability of Using Autonomous Three‐Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to Old Faithful, Yellowstone. Seismological Research Letters ; 88 (5): 1268–1278, doi: [url=https://doi.org/10.1785/0220170051]https://doi.org/10.1785/0220170051[/url].

Wu, S.-M., K. M. Ward, J. Farrell, F.-C. Lin, M. Karplus, and R. B. Smith (2017). Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin, Geophysical Research Letters, 44. doi: [url=https://doi.org/10.1002/2017GL075255]https://doi.org/10.1002/2017GL075255[/url].