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Summary

The G waves from the Niigata earthguake of June 16, 1964
recorded at the world-wide standard seismograph stations are studied
for the purpose of elucidating the source mechanism.

The observed radiation pattern of G2 waves with period 200 sec
indicates a source of pure thrust fault with the strike direction
N20°E. This result is in excellent agreement with those from the
first motion study as well as from the field studies of the epicentral
area by various geological and geophysical methods.

The amplitude and phase spectra for shorter periods are variable,
and a statistical approach is taken in their investigation. Both G2
and (G3 waves with periods shorter than about 150 sec show a sta-
tistical behavior expected for a finite sample of & smoothed Gaussian
noise. The factors causing this randomization may be 1) the source
complex, 2) the interference due to lateral refraction, and 3) the
interference with higher modes or body waves.

The near-pole phenomena are demonstrated on a.before-after
picture by the forward extrapolation of G2 wave fronts and the
backward extrapolation of G3 wave fronts. It is confirmed that the
=/2 polar phase advance is a good first approximation. However,
the “‘after” picture obtained from 3 waves shows much greater
irregularity than the ‘‘before” picture obtained from G2 waves, and
it is difficult to find the source mechanism by the phase egualization
of G3 waves.

The apparent @ values estimated from averaged spectra vary
from 100 to 200 for the periods from 200 to 50 sec.

§1. Introduction.

The world-wide standard seismographs (WWSS) distributed by
the Coast and Geodetic Survey now furnish the seismologist with data



24 K. Ax1

appropriate for investigating the generation and propagation of seismic
waves on an absolutely quantitative basis. In the present paper, we
studied the G waves generated by the Niigata earthquake (M=7.5) of
June 16, 1964,

The phase and ampiitude equalization method of determining the
source parameters developed in recent years” ** will be successfully
applied to the G waves with period of 200sec. The applicability of the
‘method to shorter period waves will be investigated by a statistical
-analysis of the variability of phase and amplitude spectra,

From the G wave amplitude spectral density we shall, in Part 2 of
this paper, estimate the magnitude of moment of component couple of
the double couple assumed as the source model. Using the dynamical
equivalence relation between the double couple and a slip dislocation, we
shall estimate the amount of dislocation, and further the energy released
by such dislocation and the stress-strain drop which occurred at the source
of this earthquake,.

The Niigata earthquake offers an excellent case for such an investi-
gation, because we are given a picture of crustal deformation accompanied
by the earthquake from detailed field studies. This earthquake may be
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like a controlled experiment, in which we can check the applicability of
the surface wave method of source study and consequently the fundamental
assumptions underlying the method. Our result strongly supports one
such assumption that the earthquake is a release of accumulated strain
energy by a rupture,

The field study of this earthquake has been made by all available
geological and geophysical methods. It is found™* that the aftershock
area is a strip trending roughly N20°E with length about 100 km and
width about 30 km. Most of the aftershocks are located at depths shal-
lower than 25 km. The source area of tsunami generated by this earth-
quake approximately coincides with the aftershock area.” The epicentre
of the main shock is not located at an end of the aftershock area but
situated near the centre slightly departing toward south-west. The focal
depth of the main shock is reported as 40 km by the Japan Meteorological
Agency (JMA). As shown later, a recomputation based on revised crust-
mantle models gives the depth of 10 to 20 km. The aftershock area lies
between Honshu and a small island called Awashima. At the time of the
earthquake, this island was upheaved by about 1.5m,® while the coast
of Honshu subsided by 0.1 to 0.3 m.**” The upheaval in Awashima is .
greater on its east side than on the west, indicating a tilting of about 1
minute.? The direction of the largest tilt is perpendicular to the general
trend of the island, which coincides with the trend of the aftershock
belt mentioned above. Several submarine faults are found by the echo-
sounding® and sparker method.*” They trend again roughly N20°-30°E,
The maximum upheaval and subsidence of the ocean bottom during the
earthquake found by the echo-sounding is 6 and 4 meters respectively.
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To sum up, the field studies suggest that the source of the Niigata
earthquake may be a bilateral faulting extending about 100 km in total
with the strike direction N20°-30°E and the vertical off-set of several
meters, north-west side being upheaved. It will be shown that this
picture of the source mechanism is in excellent harmony with observations
on body and surface waves generated from this earthquake,

§ 2. Data.

We have collected through the Coast and Geodetic Survey full sized
copies of long and short period seismograph records of the Niigata earth-
quake obtained at the world-wide standard stations. Table 1 shows the

SEEE

Fig. 1 Computer plot of a typical G wave form.
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Fig. 2 Amplitude spectral density, phase delay and group delay
for the wave form shown in Fig. 1.
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epicentral distance and azimuth to each station from the epicentre,
together with the azimuth to the epicentre at the station and one half
of the length of complete great circle path through the station. The
epicentre coordinates are taken as 38°23'N and 139°13’E, and computation
is made by the use of the Rudoe’s formula.

In the present paper, only those records are used which show well
isolated G waves with amplitudes significantly above the background noise.
G waves are identified by the arrival time and polarization, their record
amplitudes digitized to one-tenth of a mm at 4sec¢ intervals by a manual
method and punched on a paper tape. The error in digitizing is checked
by comparing the original record with the computer plot (Fig. 1) of the
digital data. Then, the amplitude spectral density | F(w) |, phase delay

é(w) and group delay %— are computed (Fig. 2). These are defined by
®

f(t)-ﬂ | Fw) | cos (ot —d(@)dw , (1)

where f(t) is the G wave record, ¢ being measured from the time of the
first data point. No smooth window is used in computing the spectra,
because most of the records chosen for Fourier analysis show well iso-
lated wavelets, and the window is practically unnecessary. The average
time length of one record is 519 sec for G2 waves, 537 sec for G3 and
593 sec for G4.

Table 2 shows the amplitude spectral density | F(w)| in unit of em
sec. These values refer to the record trace, and not to the true ground
displacement. In order to see the effect to noise or error in measurement
on the tabulated values, we made the following error estimation.

Let S; and N, be the ith sample values of the signal and the Gaussian
noise with the RMS amplitude of o respectively, then the cosine term
a;= 4t 3% (S;+ N;) cos 275%41& will follow the Gaussian distribution with

K 0
the mean value

a= 4t S, coszn’“jﬁ’t (2)

0

and the variance

w—ap="c%e (3)
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The sine term b; will follow the same distribution with the same variance

as a;. Thus,

T,-
2

i o

Ha;—a&;} +{b;,— 54'}2]/

will follow the y* distribution with two degrees of freedom. Then, the
average value of A=[{a,—a,*+{b;—b,’]"* may be expressed as

= (= 24 — A 7 /T, 4t
A:g —_— — — _JdA=+v/ .9/ 2020, . 4
o Ty At-0* exp(To_ t-02> ]/2 2 7 (4)

In the absence of the signal (@;—b,=0), average amplitude spectral density
of the noise may be estimated by use of the above formula, if the record
length T,, sample interval 4t and o are given, If the RMS noise
amplitude is 1mm on the record, the density for the sample length
corresponding to G2 waves will be around 4.0 cm sec. For G3 and G4,
they will be 4.1 and 4.8 em sec respectively. In using the data in Table
2, we must be cautious with the use of values comparable or smaller than
the above noise level. In the presence of the signal, the contribution
from noises to the power spectrum may be estimated by the following
formula,

&+ =T+ b+ A (5)

where, A’=T,-4t-¢* is the average contribution from noises.

We must note here that except for reading errors, the actual noises
are not statistically independent between the consecutive sample points,
but show smooth long period oscillations on the record, This kind of
noise may be roughly expressed as a moving average of the Gaussian
noise., The RMS amplitude of such noises will be 1/n of that of the
original Gaussian noise, where » is the number of points over which the
average is taken. For such cases, the noise spectral density of 4.0 cm
sec for G2 waves would not correspond to the noise level of 1 mm ob-
served on the record but to that of 1/v/ 7% mm.

Table 3 shows the phase delay time, (¢, —t,)+¢(w)/w, where t, is the
time of the first data point and ¢, is the origin time of the earthquake
(4" 01™ 41%°, GCT). The values are uncertain by integer multiples of
period 7. The phase delay time in Table 3 refers to the peak of trans-
verse motion on the record in the counterclockwise direction as seen from
the epicentre. The values are not yet corrected for instrumental phase
shift,
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The sense of the first motion at each station has been read by
Hirasawa™ directly from the seismogram and is included in Table 1.

Tables 1 to 3 include all the data on which the analyses in the
following chapters are applied, ‘

§ 3. Radiation pattern of G2 waves with period of 200 sec.

The wave length of G waves corresponding to period of 200sec is
about 1,000 km. Since the linear dimension of the source of the Niigata
earthquake seems not to exceed 100 km as the aftershock area and the
Tsunami source area indicate, we may safely assume that the source is
a point for the wave with period of 200 sec.

For the first approximation, we shall further assume that the source
is a double couple operated in the form of a step function in time, Under
these assumptions, we may find the orientation of the double couple or
the mode of fault motion by comparing theoretical and observed phase
and amplitude spectra at various azimuths from the epicentre, In order
- to do this, we must first correct the observed spectra for propagation
and recording.

The correction required for the observed phase of G waves may be
expressed by the following formula,

Ale+t,—t, n  m ‘
P Ty (6
where ¢, is the phase delay time listed in Table 3, 7 is the period and
n is the number of polar passages. We call ¢, the source phase and
measure it in parts of a cycle, 4 is the travel distance, ¢ is the phase
velocity and 4/¢ represents the correction for propagation. ¢; is the phase
delay time caused by the recording instrument. Table 4 shows the average
value of ¢ for G waves over various great circles obtained by Toksoz and
and Anderson.® Table 4 also shows the values of ¢, corresponding to
the long period seismograph of the WWSS stations computed by the use
of Hagiwara’s formula® on the assumption that the pendulum period is
30 sec, the galvanometer period 100 sec, and both are critically damped.

3D TJE{ASAWA, reborted at the meeting of the Seismological Society of Japan,
Oct. 1965.

32) M.N. ToksOz and D.L. ANDERSON, report contract AF-AFOSR-25-63, Califoruia
Inst. Tech., 1963.

33) T. HAGIWARA, Bull. Earthq. Res. Inst., 36 (1958), 139-164,
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Table 4. Phase velocity of G waves and instrumental delay
time used for correction

Instrumental phage

Frequency \ Period \ Phase velocity delay time
(sec™1) ’ (sgc) é (kmc/’sec) ’ (si;c)
0.0050 ‘ 200.0 | 4,901 ’ 88
0.0065 153.8 4.774 i 75
0.0080 \ 125.0 1 4.697 \ o7
0.0095 ‘ 105.3 ‘ 4,642 [ 60
0.0110 90.9 4.604 \ 55
0.0125 \ 80.0 \[

4.575 } 51

The correction term —% in the above formula comes from the polar
phase advance® of % occurring when waves pass through the epicentre

or its antipode. Although this value corresponds to a uniform spherical
earth model, it will be shown later in the present paper that this is a

good first approximation for the actual earth. The last term % enters

in the formula because the source phase ¢, is defined in such a way that
the counterclockwise motion at the epicentre, when waves departed there,
is taken as being positive,

The source phase ¢, obtained from G2 and G3 waves are listed in
Table 5 according to the azimuth of radiation for pericds from 80 to
200 sec. As can be seen in the table, the variability of the value within
a small range of radiation azimuth is greater for G3 waves than for G2.
The variability increases with frequency for both G2 and G3. For ob-
taining the orientation of the source double couple, we shall use only
the values for G2 waves with period of 200 sec. Analyses of data for
G2 waves with shorter periods and for G38 waves will be made later.

For a rough estimation of the amplitude variation with respect to
the radiation azimuth, the amplitude spectral densities listed in Table 2
for G2 waves with period 200sec are equalized to the lapse time of
7000 sec and the epicentral distance of 90°, as shown in Table 6. The
@ value is assumed as 120 according to the result of Ben-Menahem and
Toksoz.* As shown in the table, the correction factor for dissipation is
~ 34) J.N. BRUNE et al., loc. cit., 7).

35) A. BEN-MENAHEM and M. N. Toksoz, cited by F. PRESS, Research in Geophysics,
2. Solid Earth and Interface Phenomena (The M.I.T. Press, 1964.)
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Source phase ¢, of G waves referred to counterclockwise

Station
|

el dab it lalel-le)

ZR<EDTRQUWPEPHQATIFRUPCOQHOCNONEQQCNH0ON ZR<ENQIZEAQEHOHRNWEONO
POCROZU-QEHC P EE— UHEEEQQ-REZYC RN Z O Bor RO EAr 8S0QRgE 2T

CHPRESOOImMPUP O 2~ HUdnCCHOOTOOR QT ORPRHEON

motion as seen from the epicentre

Frequency -in ¢/s

Wave | Radiation

type [ azimuth —— *T-—rt‘—f\-ﬁr — T T

(deg.) } .005 ; .0065 | .008 i 0095 | .0110 | .0125

\

G2 | —175.3 l L e N ST N RS
G2 } —154.3 | —.07 | —.01 « —.49 | +.23 | +.33 | +.39
Go | 1354 | 2 | -30 | 424 | 429 37 | -l
G2 J 1343 | —24 | 26 | —14 | —.26 | —24 | —.20
G2 | —129.4 | —.23 | -3, —.38 | —.49 | +.19 | +.12
G2 —127.0 | —.28 { — 40 | —.44 | +87 | +33 | +.41
G2 ~125.9 | —.23 | —.40 | +.44 | +.39 . +.31 | —.20
G2 ~26.6 | —.9 | —39 | —.39 | -.38 | —.32  +.39
G2 — 131 47 | 446 44 | -9 | — 48 [ +.ud
G2 — 6.0 | +.32 | +.32 | +.30 | +.19  +.34 | +.47
G2 0.4 | +.43  +.39 | —.24  —.27 | —23 1 —.15
G2 53.8 | —.16 | —.20 | —.32 | —34 | -3¢ | —.24
G2 60.5 | —.12 { —24 | —39 | —46 | +.44 | +.25
G2 152.2 | +.42 | +.39 | +.39 . —.47 | —.47 | —.29
G2 156.2 | +.39 | +.39 ! +.37 | +.50 | —.40  —.33
G2 159.4 +.38 / +.34 | +.3¢ | -39 | —.45 | —.3
G2 161.7 | +.36 | +.32 | .30 | +.43 | —.34 . +.50
G2 173.4 | 4+.30 | +.21 4.1 & 4+.13 | +.11 | +.04
G2 176.0 | +.36 ; +.37 | +.46 | w27 | =21 | .49
G3 4.7 ~32  —18 ! —19 0 —11 | -.05 | +.04
G3 | o419 | +24 | 436 | tlaa | -7 -4l | -5
G3 | %57 | +30 | —45 | —a1 | —oa | +12 | —3
G3 32.0 | —.43 | +.36  +.42 | —.49 | —44 | +.41
G3 327 | —13 | —25 | —.37 | —.42 450 | .49
G3 446 | —.26 , —.45 | +.35 | +.25 | +.09 .00
G3 7 | -7 | —31 | — 46 | +.48 | —.48 | +.40
G3 467 | —.80 | —.46 | +.40 | +.36  +.38 | +.47
G3 49.3 | —.31 | —.47 . +.48  +.42 | +.50 —.4l
G3 506 —.26 | —.4l | +.87 [ +.20 | £.07 | —.04
G3 | 51.2 —24 ' —37 | +.46 | +.36 +.25 | +.15
G3 53.0 | —.81 | —.42 .41 | +.41 | -.29  —.31
G3 f 541  —.38 | —.8 | —.34 | —.42 | +.35 | .33
G3 | 548 | -6 | —2r | -2 | —l26 -3 | 419
G3 | 59.0 | —.21 | —.42 | +.30  +.09 -0 .08
G3 | 861 | +.09 J +.25 } 431 | 420 | —.39 | —.11
G3 88.4 | —.05 | +.07 | +.06 | +.18 = +.48 | —.29
G3 128.3 [ 44 | —43  —27 | —.34 | —20  —.04
G3 153.4 | —.41 | —42 | —.38 | —.23 | +.14 | +.42
¢8| 162 5| 44z | 136 +.34 425 1 409
G3 | 166.9 | +.40 = .03 | —L | +.06 | —.01 | —.09
G3 \ 174.0 | +.89 | +.20 « 4+.04 | —11 = —.10 @ —.06
G3 | —179.6 } —.45 | +.43 } +.30 | +.24 j +.04 ; —.13
G3 | -m81 | 415 | 4lar | -3z | -1 | +a1 | 434
82 B ] FA0 |2 -2 o —~.gg 8

— 27. —41 0 —23 1~ —. —. —~.
G3 | 240 | “lm e | o | oo
G3 | — 238 | —.3¢4 | —.26 | —.24 : —.15 | +.06 | +.07
G3 | — 206 | —.14 R N I+ ’ 17
G3 — 183 | —.45 | —36 1 —.42 | —47 | 4+.30 | +.82
G3 | — 6.6 | +.83 | +.20 [ +.11 | +.15 | +.47 43
G3 | - 40 | —d0 | b5 sz 08 +25|—h%
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Fig. 3 Comparison of the theoretical source phase (refers to
counterclockwise motion as seen from epicentre) and amplitude with
thefobserved for G2 waves with period of 200sec. The theoretical
curves are computed for a double couple source corresponding to pure
reverse dip-slip fault striking N20°E with the dip angle of 65°. The
unit of amplitude is arbitrary. The absolute value of amplitude is
discussed in Part 2.

close to unity and a different choice of @ value will cause a negligible
effect on the corrected values.

The source phase and amplitude thus obtained for various azimuths
from the epicentre are shown in Fig. 3. Theoretical curves shown in
the figure fit well the observed points both for phase and amplitude.
These theoretical curves® are based on a double couple model corresponding
to a reverse fault striking in N20°E. (The theoretical curves for a single
couple are nearly the same as those for a double couple in the case of
pure dip slip, the difference showing up in the radiation patterns of S
and Rayleigh waves in such a case.) The fault plane is either the one
dipping toward N70°W with dip angle of 65° or the one dipping toward
N110°E with dip angle of 25°. In any case, the fault motion is upward
on the overhanging side of the plane. As mentioned in the introduction,
the field investigation made in the epicentral area indicated the fault
strike running in the direction N20° to 30°E, which agrees remarkably
well with the one obtained from G waves. From the field observations

36) K. Axi, loc. cit., 17).
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that the northwest part of the area was upheaved and the southeast
part subsided, the fault plane which is dipping toward N70°W is preferred.

It must be mentioned that the above solution is not a unique one
that explains the observation on G waves. The dip angle of the fault
plane may be varied considerably with negligible change in the theoretical
phase curve and the pattern of azimuthal dependence of amplitude,
Furthermore, a strike slip faulting along a vertical fault striking either
N25°W or N65°E can explain the observed phase and amplitude. This
interpretation, however, contradicts the radiation pattern of the first
motion of P waves observed at local and world-wide seismograph stations.

§ 4. Comparison with the radiation pattern of the first motion.

For a precise determination of the emergence angle of ray that
reaches a local station as the first arrival, we must know accurately the
focal depth and the local crustal structure. By the use of the P time
data supplied from the JMA, the focal depth was computed for three
crustal models, in which the velocity distribution is assumed as v=wvy(r/r)%
for the crust and v=w,(r/r)" for the mantle, where » is the distance
from the earth’s centre. In all the models,”” v, is 5.78 km/sec, v, is
7.75 km/see, z, is —24.4 and 2, is —2.8, The crustal thickness, »,—7,,
is varied from 29 to 35 km and we obtained the focal depth varying from
10.6 to 18.6 km as shown in Table 7. This is another example in which
the focal depth determined by the JMA (40 km in this case) is a little
too deep.®®

Table 7. Origin time, epicentre and focal depth under
different assumption on crustal thickness

" Crustal

: i Origin time Latitude Longitude Focal depth
B th?i%;l)ess | (sec) (deg) (deg) (km)
29 ‘ 40.840.47 38.41+.016 139.284-.020 10.6+4.4
32 40.6+0.43 38.41+ .016 139.234.020 13.844.1
35 40.6+0.39 38.414.016 139.234-.020 18.6+£3.9
JMA 39.9 38.350 139.183 40.0
CGS 44.3 38.3 139.1 57

37) K. AK1, Bull. Earthq. Res.

Inst., 43 (1965), 15-22.
38) K. AK1, Bull. Earthq. Res. Inst., 43 (1965), 23-38.
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UPPER FOCAL HEMISPHERE
OF
THE NIIGATA EARTHQUAKE

STRIKE - N /STRIKE :
N20° E / N20°€E
DIP 20° N aemmm=oSw

MAXIMUM
PRESSURE

COMPRESSION O (WWSS) O (JMA)
DILATATION ® (WWSS) W (JMA)

Fig. 4 Stereographic projection of the upper focal hemisphere
for the Niigata earthquake.

The upper focal hemisphere is shown by a stereographic projection
in Fig. 4. Nearly identical patterns of compression and dilatation are
obtained in the above three cases of different crustal thickness. The
first motion data from the WWSS stations listed in Table 1 are also
included in Fig. 2. Two mutually orthogonal planes which best separate
compressions from dilations are drawn by the use of the Wulff’s grid.*”
The strike of both planes runs in the direction N20°E, identical to the
one found from the G wave data. The fault plane is either the one
dipping toward N70°W with dip angle of 70° or the one dipping toward
N110°E with dip angle of 20°. In any case, the motion direction is up-
ward on the overhanging side of the fault in agreement with the result
obtained from G waves,

39) E.N. BESSONOVA et al., Investigation of the Mechanism of Earthquakes (1960),
p. 151.
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§ 5. Variability of amplitude spectra of G waves.

As shown in the preceding sections, the mechanism of G wave
generation at the source was successfully restored from the observed
amplitude and phase of G2 waves with period of 200sec. We noticed,
however, that even at this long period the amplitude show relatively
greater variability within a very narrow range of radiation azimuth than
the phase. The variability increases with decreasing period. In this
section, we shall choose a group of stations located in a limited range of
radiation azimuth, and examine the variability of amplitude spectral
density within the group.

Stations are grouped into three; one is in the azimuthal range from
0 to 45° centred at about N20°E, which is the theoretical node direction
for G waves (For convenience, we call it node direction although this
is not a true node as shown in Fig, 3.), the other two groups cover two
opposite azimuthal ranges 0 to —30° and 180° to 150°, both in the loop
direction for G waves. The stations of these groups are shown in Tables
8 and 9. Table 8 lists the amplitude spectral densities of G2 waves
equalized to the lapse time of 7000 sec and the epicentral distance of 90°,
Table 9 lists those of G8 waves equalized to the lapse time of 11000 sec
and the epicentral distance of 90°. The equalization procedure is the
same as illustrated in Table 6. We used the same @ value of 120 for all
the frequencies. A different choice of @ value will affect only slightly
the equalized values, because the time differences between the group
arrival time and the equalized time (7000 sec for G2 and 11000 sec for G3)
are small for any stations,

As shown in these tables, the value of amplitude varies considerably
among the stations of each group. As a measure of the variability, we
estimate the variance ¢® according to the following formula.

gr 20 (B —T)" (7)
n—1

where x; is the spectral density at the ith station of group, = >, x;/n,
and n is the number of stations of the group. The mean and variance
for G2 waves are listed in Table 10 and those for G3 waves in Table 11.

First, we shall compare the variances for the two opposite loop di-
rections (Group 1 and 2 in Table 10, Group 5 and 6 in Table 11). We notice
in general that the variance increases with decreasing period. There seems
no significant difference in the variance between Groups 1 and 2. In fact,
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the F value, that is, the ratio of the estimate of variance of one group
to that of the other does not exceed the rejection limit on the significance
level of 5% at all periods with only two exceptions; 54 sec for G2 and
154 sec for G3. Except for these two cases, we may compare the mean
of amplitude spectral densities between the two groups by the use of
Student’s ‘‘¢’’, which is defined as follows,

X, —x,
W, s )™ (8)
{,@gﬁfﬁi(”_f_%}” :
Ny -+ Ny — 2

where the suffix refers to the group number. This quantity obeys the
t~distribution with n,+#%,—2 degrees of freedom. For instance, the pro-
bability that the ¢ value exceeds 2.365 is 0.05 if the number of degrees
of freedom is 7. As shown in Table 10, none of the ¢ values for G2
waves exceeds this limit, Thus, we cannot reject, on the 5% significance
level, the hypothesis that these two groups belong to the same statistical
" ensemble. This result permits us to put them together as Group 3. The
mean and variance of this group are then computed by

N N (9)
%1 + /}/‘7’2
gi= (m—Doi+ (. —1a3 (10)
W+ My —2

and listed in Table 2. We shall now compare these values with those
expected for the spectral density of a random wavelet.

We define a random wavelet as a finite portion of the Gaussian noise
which is smoothed by a linear realizable filter with a transfer funection
G(w). Let z; (1=1,2, --- m) be the displacement of the wavelet from
zero sampled at equal intervals of 4t. The Fourier cosine and sine
integrals may be approximated by

a;=4t > x; cos (w1 4t) (11)

and

respectively. Since these expressions are weighted averages of x;, their
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mean and variances are related to the mean and variance of x; by well
known formulas. We obtain

a,;=0, (13)
5,=0, (14)
@= "5 | 6w o} (15)
b~ ﬂ | G(w,) |07 (16)

where o? is the variance of the Gaussian noise before smoothing. The
amplitude spectral density of the random wavelet is the square root of
the sum of o} and b%. Since a; and b; obeys the Gaussian distribution
with zero mean value and a common variance, the sum of their squares
devided by the variance obeys the y* distribution with two degrees of
freedom. Putting A%=a%-+b%, we obtain the probability density function
of the amplitude spectral density A; as

f(4)= 0; eXp( 5‘;) , « 17)

where

o= ”"t | G(w;) ['o%.

J

The mean and variance of A; are then obtained as

A= A rA)dA,- v Ta, (18)

A=Ay = - Ayfayda=(2—7 o (19)

In comparing these theoretical values with the observed, it is con-
venient to form the ratio of the square root of variance to the mean as
a measure of variability. The theoretical ratio is

7 V5

V(A — i

A, /‘%

=0.523 . ’ (20)
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Fig. 5 The ratio of square root of sample variance to sample mean for amplitude
spectral density of the equalized G2 waves in the radiation azimuths —30° to 0°, and
150° to 180°. The upper and lower limits indicate the range of the ratio where the
hypothesis of random wavelet is not rejected on the 59 significance level.

The corresponding observed ratios for Group 3 of G2 waves are given in
Table 10 and plotted against period in Fig. 5. The ratio is the smallest
at 200 sec, approaches to the theoretical value of 0.523 at 150 sec and
reaches 0.75 at 105 sec. At shorter periods, the ratio lies within 0.1 from
the theoretical value, The limits for observed values significantly
departing from the theoretical may be obtained as follows,

We roughly assume that the observed spectral density approximately
obeys a Gaussian distribution. Then, the sample variance ¢® multiplied
by the number of degrees of freedom and devided by the ensemble variance
o) will obey the x* distribution with that number of degrees of freedom.
We roughly estimate the ensemble variance ¢? from the sample mean T by
the following relation

o= (0.523%)" . (21)

It then follows that #0°/(0.523%)* obeys the yx* distribution with %
degrees of freedom. For Group 8 of G2 waves, the number of degrees
of freedom is 7, in which case the rejection limits of ¥ on the significance
level of 5% are 2.1674 and 14.067. The rejection limits of the ratio
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o/% are then 0.5231/2.1674/7=0.291 and 0.5231'14,067/7=0.741. The
upper limit thus obtained may not be applicable because the great sample
variance contradicts the assumption that the spectral density obeys the
Gaussian distribution. We may, however, use the lower limit in our
problem. The observed ratio of 0.24 at period of 200 sec is lower than
the limit 0.291., For other periods the observed ratiog are greater than
this limit. From this we conclude that except for 200 sec, the amplitude
spectral density of G2 waves may be regarded as those of a random
wavelet.

The same analysis on G383 waves leads to a similar result, as shown
in Table 11 and Fig. 6. We notice, however, that the variability is in
general less for G3 waves than for G2 waves, and the randomness is
rejected not only at period of 200 sec but also at 65 sec.

This difference in variability between G2 and G3 waves is shown
more directly in the histograms of spectral density in Figs. 7 and 8.

In Fig. 7, we show the number of cases in which the spectral den-
sity of G2 waves with periods from 65 to 125sec falls in a specified
range, after confirming, by the ‘¢’ and ‘“‘F”’ tests, that the mean and

Period in secC

200 150 125 100 80 60 50
‘—- T [ I T
e X G3 wavses
S % 1.0 _
£ £ in azimuths =30° to 0°, 150 to 80"
a
®
3 ®
o
=4 [
(=] o
—- @
o
ey L
83
- £
o
- e
[ =4 o
=]
b7
o ]
.005 0l .05 02

Frequency in c/ S

Fig. 6 The ratio of square root of sample variance to sample mean for amplitude
spectral density of the equalized G3 waves in the radiation azimuths —80° to 0°, and
150° to 180°. The upper and lower limits indicate the range of the ratio where the
hypothesis of random wavelet is not rejected on the 5% significance level.
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variance are uniform in the above period range. For 3 waves, we can
put the data for periods from 71 to 154 sec together, and obtain the
histogram as shown in Fig. 8. The theoretical probability density curves
in both figures are computed by Eq. 17, where the theoretical variance
is computed from the sample mean by Eq. 21. The agreement between
the observed and theoretical curves is good for both cases.

Now, we shall make a comparison of the variability of spectral
density between the theoretical node and loop directions. Group 4 in
Table 10 and Group 8 in Table 11 includes the stations in the azimuthal
range from 0° to 45°, which lie within 25° from the theoretical nodal
line indicated in Fig. 3. The mean and variance for this group are
listed in the tables. The comparison of mean is made for periods, for
which no significant difference in variance is found by the “‘F”’ test.

Period in SE€C

200 150 125 100 80 60 50
T T T T
Q
/’ \\
150 P 5
; “,
/ R
/, \
> / “
-— v \
- Ay
w . N
e d \\ b\
© ‘«\
Q
_E 100
S G2 waves
a st 7000 sec
Gzimuths
- to station
2
3 — o
g 0 2 150° to 180°, -30° to ©
o
§ ——0—0-—0
= O to 45
Noise level for RMS imm |
R (Y T T
005 (o] 015 02

Frequency in c/S

Fig. 9 Mean amplitude spectral density of the equalized G2 waves in
the loop direction (—30° to 0°, and 150° to 180°) and in the node direction
(0° to 45°). The noise level indicated corresponds to a Gaussian noise (not
smoothed) with root-mean-square amplitude of 1 mm on the record. (cf. §2.)
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For G2 waves, we found that only at period of 200 sec¢ the mean am-
plitude spectral density in the theoretical loop direction (Group 3) is
significantly greater than that in the node direction (Group 3). As a
matter of fact, as shown in Fig. 9 the mean density is greater in the
node direction than in the loop direction for periods shorter than 80 sec,
although the difference is not significant on the level of 5%. This
reversal occurrs at a longer period (150 sec) for G3 waves as shown in
Fig. 10. For G3 waves, a significant difference is observed only at
period of 80 sec, at which the spectral density is greater in the theoretical
loop direction than in the node direction.

Period in sec

200 150 125 100 80 60 50
"\ ] ] T TWA
.‘? 63 waves aft 11000 sec
w
i ‘station
%100 | Az:mgfhs too sta Lo _
© —0— 150 to 180", -30° to O
© 0° to 45°
G
L]
Q.
v
L3
3
> S0b———+
a
£
o
=
o
L4
=
LT 1
005 .0l 015 .02

Frequency in c/S

Fig. 10 Mean amplitude spectral density of the equalized G3 waves in
the loop direction (—30° to 10°, and 150° to 180°) and in the node direction
(0° to 45°). The noise level indicated corresponds to a Gaussian noise (not
smoothed) with root-mean-square amplitude of 1 mm on the record. (cf. §2.)

It should be remarked here again that the above node direction is
not the direction of true node, but shows (Fig. 8) a small finite am-
plitude which depends on the focal depth, wave length, source orientation
and layer parameters of crustal structure. It is, however, difficult, if
not impossible, to explain the above observations in terms of these factors
as far as a spherically symmetric earth model is assumed.
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§ 6. Variability of phase spectra of G waves.

In this section, we shall examine the variability of phase spectra
of G2 and G3 waves. The material is the source phase obtained from
observed phase by correcting for propagation and recording. We shall
deal only with stations in the loop direction, because a greater variability
of phase is theoretically expected near the node direction, and we are
interested in the variability where it is expected to be small.

We have selected five stations lying in azimuths from —30° to 0°
where both G2 and G3 are well recorded. Table 12 shows the source
phase for these stations, For a random wavelet, the probability density
function of the phase will take a constant value over the entire range,
which we define from —.5 to +.5. We transform the phase @, into a
variable ¥ which obeys a Gaussian distribution with zero mean and unit
variance by the following formula

| do=—t=| e vz @

The transformed values are also listed in Table 12,

In order to find if the observed phases may be regarded as those of
a random wavelet, we compute the following quantity for each period
and wave type,

=3 w9, (23)
where

T=3u.5. (24)

If the waves are random, we expect that the above ¥* will obey the ¥
distribution with four degrees of freedom.

The results are shown in Fig. 11, where the ¥ are plotted against
period for G2 and G8 waves. For G2 waves, the hypothesis of random
wavelet is rejected at periods longer than about 110 sec on the significance
level of 5%. On the other hand, for G3 waves we cannot reject the
hypothesis at all the periods. In other words, the source phase derived
from G8 waves recorded at stations in a azimuthal range of about 30°
from epicentre are so variable that the waves may be regarded as random
wavelets, We shall discuss some consequence of this result in the next
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Fig. 11 A test of the hypothesis of random wavelet for
phase angle of G2 and G3 waves.

section. At least, this offers a quantitative explanation why we did not
use the G3 and short period G2 wave data in obtaining the source
mechanism in § 3.

§ 7. Discussions on the variability of spectra.

We shall now look into the cause of the variability of spectra des-
cribed in the preceding two sections. At least, we can positively state
that the variability is not due to poor calibration of instruments, because
the variability of both phase and amplitude decreases with increasing
period, and the randomness is rejected for G2 waves with period of
200 sec. We may attribute the randomness of shorter period G2 and G3
“waves to 1) complexity of the source, 2) interference between the waves
undergoing refractions due to lateral heterogeneity of the earth’s upper
part, including the complex phenomena of polar passage, and 3) inter-
ference with body waves and higher mode surface waves.

The last factor, which we may call a radial interference as compared
with the lateral one (the second factor), is included because this seems
to explain most readily the smaller amplitude variability of G3 waves
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relative to G2, This may be explained, however, by a lateral interference
alone as follows. If the waves are coherent when they leave the epicentre
and lose the coherency as they travel, the coherency of interfering
waves will be greater for G2 waves than for G3. The result of inter-
ference between coherent waves can be more variable than that of well-
randomized waves, as most impressively shown on a picture illuminated
by a coherent light from a laser,

It should be remarked here that the observed variability refers to
the azimuthal range of 30° from epicentre. If the randomness applies
to an infinitesimally small range of azimuth, the waves will propagate in
random directions and not in a single direction like the great circle. The
observation of G3, G4 and G5 arriving at right times at many stations
obviously rejects this supposition. Therefore, the wvariability should
decrease if the azimuthal range be taken narrower.

Our result on the spectral variability throws a serious doubt on the
dependability of the directivity function obtained from a single station
record, Figs. 12 and 13 show the ratio of G2 to G3 amplitude for stations
in the azimuthal ranges from —30° to 0° and from 150° to 180°. The
@ values used for propagation correction are obtained from the mean
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Fig. 12 The directivity functions for the stations located
in the azimuths —30° to 0° from the epicentre.
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Fig. 13 The directivity functions for the stations located
in the azimuths 150° to 180° from the epicentre.

amplitude, as described in a later section (Column 4, Table 15). These
figures show a strong variability of directivity function among stations
in a limited azimuthal range,.

In order to clarify the cause of the variability of spectra, we shall
probably need a denser network of long period seismographs than the
existing one. Future efforts must be directed towards finding a deter-
ministic relationship between the spectra at individual stations and the
complex factors influencing them. For the present, however, we shall
assume that the effect of the complex factors may be eliminated from
the observed amplitude spectral density by averaging it over several
stations in a certain range of azimuth from epicentre. This assumption
may not be too unrealistic, because the chance that the interference
_Phenomena work on amplitude constructively may be equal to the chance
that they work destructively. We shall proceed with this assumption to
utilize the mean spectral density in a more detailed study of the source
mechanism in later sections.

§8. Group and phase wave fronts before and after a polar passage.

For a spherically symmetric earth medel, the Fourier phase of surface
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waves advance by 7/2 when they cross a pole, that is, the epicentre or
its antipode. Since the actual earth is not spherically symmetric, the
waves will not arrive at a pole simultaneously, and will show a complex
interference phenomenon which may not be explained by a simple phase
advance,

The pattern of wave fronts just before and after a polar passage
may be obtained with a good accurracy by a forward extrapolation of
G2 waves and a backward extrapolation of G3 waves to a small area
around the epicentre.

First, we shall find the group wave front that is the position of
wave energy at a specified time. Fig. 14 shows the group wave front
at 8900 sec after the origin time of earthquake. This was obtained by
by extending the position of each station along the great circle direction
by the distance over which the waves travel during the time 8900 sec
minus the group delay time observed at the stations. The speed of wave

Group wave front of G waves ( T =100 to 200 sec )
at 8900 sec

— before re-entering epicentre —
N

180°

Fig. 14 The group wave front of G waves with periods
100 to 200 sec at 8900 sec after the origin time as extrapolated
from G2 data. The length of straight line at each extra-
polated point indicates the range of standard error.
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is assumed as 4.40 km/sec. An error of 1% in this value will produce
an error of about 100 km in the extrapolated position of wave front.
The group delay time used is the average over periods from 100 to
200 sec. The length of line shown in the figure corresponds to the range
of standard error of the average group delay time,

We notice that the earliest arrival occurs at azimuth about N20°E
and the latest at about N60°E. Their difference in distance from epicentre
is about 700 km which is 1.8% of the total travel distance. Since the
maximum difference expected from the ellipticity of the earth is 0.10%
at this latitude, the observed difference must be attributed to the lateral
variation of wave velocity on the earth. The smoothed curve drawn to
fit observed points is exactly point-symmetric about the epicentre. This
is expected, since the waves in the opposite azimuths traveled along
nearly the same great circle.

Group wave front of G waves { T = |00 to 200 sec )
at 9400 sec

-— ofter passing epicentre -—
N

N B

180°

Fig. 15 The group wave front of G waves with periods
100 to 200 sec at 9400 sec after the origin time as extrapolated
from G3 data. The curve shows the extrapolation of the
smooth curve shown in Fig, 14. The length of straight line
at each extrapolated point indicate the range of standard
error.
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Assuming that the smoothed wave front proceeds with velocity of
4.4 km/sec along the great circle direction passing the epicentre, we may
predict a theoretical position of wave front 500 sec later (9400 sec after
the origin time). The predicted wave front is compared with the back-
ward extrapolation of G8 waves in Fig. 15. The agreement between the
predicted and observed is generally good, supporting the simplified
assumption made in the prediction. We notice, however, significant dis-
crepancy, for instance, for stations COL and BAG. Both stations show
good records of G3 waves of typical impulsive form (Fig. 16 and Fig. 17).

¢s" 53" 00.0"° cOL G3

—2min.—
68"40"00.0°° BAG G3
N v .
r'2 min.—
S
Fig. 16 The record of G3 waves at Fig. 17 The record of G3 waves at
the station COL. the station BAG.

We cannot attribute this to a poor extrapolation, because both stations
are located at relatively short distance from the epicentre. A strong
lateral refraction may be a reasonable explanation, because the wave
paths to both stations lie along the boundary between the ocean and
continent. On the other hand, a significant asymmetry between the NW
and SE directions may be attributed to a poor extrapolation, because the
wave paths toward SE lie in the Pacific ocean while those toward NW
in the Asian continent including the Himalayas.

Keeping in mind the picture of group wave fronts at the two instants,
we shall now look at the phase wave fronts at the same instants. Since
the measurement of phase delay time can be done much more accurately
than that of group delay time, we should be able to obtain a more pre-
cise picture of wave fronts for phase. The phase wave fronts shown in
Figs. 18 and 19 correspond to the peak of ground displacement with period
of 200 sec in the counterclockwise direction as seen from the epicentre.
The phase velocity of 4.901 km/sec is assumed in the extrapolations. The
extrapolated points at 8900 sec obtained from the G2 data form a re-
markably coherent wave front. They are nearly point-symmetric with
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Phase wave front of G waves ( T = 200 sec)

ot 8900 sec

— before re-entering epicentre -—

! epicentRe : !
i + i

| I |

/'// / .

/// /

" T /

-120°

180°

Fig. 18 The phase wave front of G waves with period
of 200sec at 8900 sec after the origin time as extrapolated
from G2 data.

respect to the epicentre, and the waves in the NE-SW directions arrived
about one half wave length ahead of (or behind) those in the NW-SE
directions. This picture is a more realistic demonstration of the quad-
rantal variation of initial phase with azimuth shown in Fig. 3. The
smoothed wave front at 8900 sec is advanced for additional 500 sec under
the assumption that the waves proceed with the velocity of 4.901 km/sec
along the great circle passing the epicentre, undergoing the 7/2 polar
phase advance. It is also taken into account that the direction of motion
as seen from the epicentre changes its sense on crossing the epicentre.
The predicted wave front is compared in Fig. 19 with the observed points
obtained from the G3 data. The observed points scatter around the
predicted wave front, lying ahead of the predicted in one azimuth and
behind it in another, and show that the assumed 7z/2 phase advance is
at least a good first approximation. The point for COL and BAG, which
showed anomalous group arrivals again deviate significantly from the
predicted. The remarkable coherency of the wave front before entering
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Phase wave front of G waves (T=2200 sec )

at 9400 sec

— after passifg epicentre —

Fig. 19 The phase wave front of G waves with period of
200 sec at 9400 sec after the origin time as extrapolated from
G8 data. The curve shows the extrapolation of the smooth
curve shown in Fig. 18 on the assumption of #/2 polar phase
advance.

the epicentre is lost in the ‘‘after’” picture. We cannot attribute this
to poor extrapolation, because the extrapolated distances are nearly the
same for G2 and G3. We must, therefore, attribute this to a complex
interference among the waves arriving from different azimuth at the
epicentral area.

§ 9. Determination of phase velocity over a complete great circle.

The lost coherency of wave front upon a polar passage, described in
§ 8, throws some doubt on the significance of the usual method of phase
velocity determination over complete great circles. In this section, we
shall examine this problem by using data at 9 stations where G, and
G,., waves are well recorded. The velocity is obtained by the usual
procedure from the difference of phase delay time (given in Table 3)
between the pair, corrected for the two polar passages and for appropriate



65

Generation and Propagation of G Waves from the Niigata Earthquake

1
L
|
|
|
1
H
|
I
I
|

, , ; , , , L,
e |0 |6 | o |0 | o e w » o 1@ |0 o | e | & | 9% |8 |VHN
v [gg0 | oL [ 28 0 0 G |6 6 |06 0 |0 |z o | % | & | Dva
oL 6770 @[ 00 0 0 |08 |9 |9 | &I |0 0 08 (£ | e | Lee |7T09
ot zeo bWt e s |8 9 |6 | % 0 |0 |g |9 | M | % | NAL
96 |9g0 | 091 | 6L | 0r | & | 07 | 9% | 0 00z | ¢ | 9T | 0 oL v | LT HAH
e | 1870 | %1 I I S S I N s Loz |o 021 | 6 | V&I | DL
0 18900 | LI |9 I |0 8 | 0 |0 | & |0 |0 |0 | &I | L LT9T | TTVA
Or L0 | 900 ST € o 88 | 0 |0 peg ¢ 0 0 | 90T | &I | 9 | 0Ld
6 |90 |06 9t |0 0 | wr o o |o&|Ss |0 |0 | | @l JE 4NH
‘3ap f w Sep M "Bop #, Bop I 3op m Bop | "Bop Bop m Jeop _ dop g "dop W Bop | 3op 4 *3op 7
[N | — S R N P N S

1230 | ) eorow woﬂmﬁ» | | 7 Tﬁ:woaw

_:Smoo | 12109 Twﬁo o.%mmwm\ m.wﬁ% Nﬂm v . W 18303 W 10710 [01100Y | URIpU] -:Mwwaﬁ oyeg| 1w |uonesg

perys | oS,mm yinog | Y3I0N , YInwizy
| S D B B i I N B R .
V S1UBUITUO)) _ SURDIQ
S}UBUIIUOD puU® SUBSI0 Ul syjed o[oI1d JBAI3 Jo suondog ‘FT OBl

S I . T |
29°y IR G1LY o 0BLY | 936F | ! | oSmreAy
509'7 I 6297 6697 L 6LF a16°¥ 8'8¢ | m-n | VHN
9897 | ey | Ty a8y | 67 e . fH-n | 9vd
B62°F I 0 |99y oLy | a8y oL 9t | 10D
229°F 5 ey | 908'F | oweey L sy NYL
€L9'% €69'% I T 4 | I8 | 996y Ly |DUD | HAD
209°7 o9 | %69y oy 026°¥ | veu | &9-rp HILN
— 6w 8IL°¥ Z6L'Y 226’ ¥ L LTor . BUH . IVA
— = A gLy | 108 eV | EeT | 'HD | 01d
389"y L 997 oLy | sy ey et LD | UNE

R R— i | ser | omen =g | o ||

606 gt 0'sal | geer | 09800z = oagus0de |
oror | <600 “ 0800° | 900" | | A oav | wopey

8/9600" =/ 18 ﬁsz:ﬂw

09S/WY UT SO[2JI9 180l [BIDASS I9AO SOIYI0[OA dsRYJ ‘¢ 9[qRl



66 K. AxI

integer multiples of period. The great circle distance is computed by the
Rudoe’s formula (Table 1). The result is listed in Table 13 in the order
of azimuth of great circle direction at the epicentre.

The velocity varies irregularily with the azimuth of great circle
direction, the difference between the highest and lowest being 1.3% of
the average. In order to find if any relation exists between the velocity
and the nature of great circle path, we measured the portions of the
path lying in oceans and continents as listed in Table 14. The water
depth of 2000 m is taken as the ocean-continent boundary. A plot of the
velocity at period of 200 sec against the ratio of the oceanic path to the
total in Fig. 20 demonstrates that there is no significant correlation be-
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Fig. 20 The phase velocities of G waves with period of
200 sec for various great circle paths are plotted against the
proportion of oceans in the total path.

tween them. Recently, Dr. D. L. Anderson of the California Institute
of Technology suggested to the writer that not only the continent-ocean
proportion but also the proportion of stable shield relative to a tectonically
active mountain region within the continents are the important factors
influencing the great circle velocities. His result® indicates that G wave
velocity at long periods is the highest in the shield area, medium in the

40) D.L. ANDERSON, personal communication.
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ocean and lowest in the tectonically active area. A comparison*® of
the G wave velocity at shorter periods between Japan and the Canadian
shield also shows about 5% lower velocity for Japan.

To look at our present data from Anderson’s point, we measured the
portion of the great circle path within the stable shield area (Table 14),
by consulting the map® of active mountains since the Cambrian period
and the map of seismically stable masses.? We found that the G wave
velocities at 200 sec along four great circles which satisfy the inequality

1.44 % oceanic path (deg.)+ shield path (deg.)>360° ,

are all greater than 4,923, while those along the other five great circles
which do not satisfy the above inequality are smaller than 4,923 except
for the station BAG. Excluding BAG, we calculated the ¢ value for the
velocity difference between the two groups of great circles according to
Eq. 8. The value is 2.303 which does not exceed the limit ¢,(0.05)=2,447
at the 5% level, but exceeds the limit #;(0.10)=1.943 at the 10% level.
In other words, the higher velocity for great circles satisfying the above
inequality is significant at the 10% level, if we exclude the station BAG.
The inequality implies that increase in the oceanic path contributes more
to increase in the great circle velocity than in the shield path. Our
data, however, are not good enough for drawing a definite conclusion
on the velocity difference between the two paths.

One interesting feature in Fig. 20 is a tendency for the scatter of
observed velocities to decrease with increasing proportion of the oceanic
path, This suggests that the greater the continental portion, the more
complex becomes the path. In order to examine the reality of this ten-
dency, we devided the stations into two groups, one with the oceanic
broportion greater than 0.6, and the other smaller than 0.6. The ratio
of the estimates of variance, the F' value, is computed as 5.484, which
does not exceed the limit F¢(0.05)=9.117 on the significance level of 5%,
but exceeds the limit I'4(0.10)=5.343 on the 10% level. Thus, the above
tendency is significant on the 10% level.

For estimating the accuracy of phase velocity determination along

) 42) K. KaMINUMA, read at the meeting of the Seismological Society of Japan, Oct.,
965,
, 43) J. H.F. UMBGROVE, The Pulse of the Earth (The Hague, Martnus Nijhoff, 1947),
plate 5,

44) B. GUTENBERG and C.F. RICHTER, Seismicity of the Earth (Princeton Univ.
Press, 1954), p. 92.
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great circles, we shall look at the velocity as a function of period and
great circle path, and apply the method of ‘‘analysis of variance” to the
7% 5 matrix listed in Table 13 (stations PTO and VAL are excluded,
because reliable measurement of velocity is not possible at short periods).

We assume that the matrix element y,; (i=1, -+ r, j=1, - -+ s) obeys
the Gaussian distribution with the mean value of m-+R;4-C; and the
variance o® R, represents the effect of path, C; the effect of period,
and for both YR,=3C,;=0. We shall form the following square sums;

Se=3(y;.—¥)",
S(J:?(gj_/y)z y

. (25)
SE:_ZT(?JU“%.*?/.;"[“W ,
ij
S:;(yij#y)ﬂzsx"i‘so"l‘sﬁ
where
_ 1
Y :72yw s
S 7
- 1y
bi="2v;, (26)
Y i
_ 1
yzizym s
r8ij

Then, if R,=0, that is, if there is no effect of path, F:VV(S—_Sl)’—Sﬁ will

B

obey the F distribution with »—1, (r—1)(s—1) degrees of freedom. If
,(f“i‘{qlﬁv will obey the F

B

distribution with s—1, (r—1){s—1) degrees of freedom.
In any case, the unbiased estimate of ¢° that is the variance of in-
dividual velocity measurement, may be obtained as S/(r —1)(s—1).
From our data, we obtain

C.,—0, that is, if there is no effect of period,

S,=0.01385 ,
S,=0.41475
S,=0.00853
(s —1)Sg

Fof

=6.496> F'4,(0.05)=2.776 ,
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("= _ 91,7 F2,(0.05)~2.508
B
_Se _0.0003554 ,
(r—1)(s—1)

where r=1T, s=5.

Both S, and S, have values greater than the limits corresponding to
the 5% significance level, Thus, not only the period but also the nature
of great circle path significantly influence the observed velocity. How-
ever, as shown before, the path effect is not very simple, but is a
complex one which probably involves interference phenomena discussed
in the preceding sections.

The standard error ¢ of the individual velocity measurement 18

estimated from S, as 0.0189 km/sec, which is about 0.4% of the average
velocity.,

§10. Revision of the source phase of G2 waves with period of
200 sec.

In the propagation correction for obtaining the source phase ¢, in
§ 3, we used the mean phase velocity obtained by Toksoz and Anderson,
Their velocity (Table 4) is about 0.4% lower than the mean velocity
obtained from great circles passing the Niigata earthquake epicentre
(Table 18). If we use our mean velocity, we must subtract about 0.14
cycle from the value of ¢, for period of 200 sec. This revision will make
the agreement between theory and observation as shown in Fig. 3
poorer. If we take into account, however, the effect of finiteness of
the source, we can make the agreement as good as that shown in Fig.
3. As will be shown in Part 2 of this paper, we adopt a model of
symmetric bilateral fault with total length of 100 km and repture velocity
of 1.5 km/sec in interpreting the observed amplitude spectral density.

For such a propagating fault, we expect a phase delay of the following
amount,

2 2
sin® X, sin® ¥

p=tan-{ X ¥
sin X cos X , sin Y co cos Y
T T + ,,,,,,,,,
X Y

where
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x— L (i ~£0ﬂ>
4 \w c /’
et ()

¢ is the azimuth to station measured from the fault strike, ¢ the phase
velocity, v the repture velocity and I is the total length of the fault,
The phase delay ¢, must be added to the source phase ¢, shown in Fig.
3 and Eq. 6 for a finiteness correction,

For v=15km/sec and L—=100km, the value of ¢, at period of
200 sec varies only from 0.081 to 0.083 cycle for any azimuth ¢. The
value is nearly proportional to L and inversely proportional to . Thus,
if we take the rupture velocity smaller than about 1.5 km/sec, we must
add about 0.1 cycle to the source phase shown in Fig. 3. This. finite-
ness correction compensates the correction for revised phase velocity and
coincidence of the theoretical prediction to the observed will be as good
as that shown in Fig. 3.

§11. Determination of & value.

We shall determine the @ value by the use of mean amplitude spectral
densities of G2 and G3 waves obtained in §6.

The mean amplitude spectral density is shown in Tables 10 and 11
for G2 and G3 waves in the loop direction (Groups 3 and 7) and node
direction Groups 4 and 8. The values for G2 are equalized to the lapse
time of 7000 sec, and those for G3 to the lapse time of 11000 sec, both
to the epicentral distance of 90°. @ of 120 was used in this equalization
for all the periods. As mentioned before (Table 6), the equalization
factor for dissipation is very close to unity and the equalized values do
not depend much on the choice of @ value,

The @ values are obtained from the ratio of the equalized amplitude
spectral density of G2 to that of G3 by equating it to exp {{zr x 4000 sec)/@ T'}.
The error of determination is estimated by the upper and lower limits
of @ value corresponding approximately to the limits of standard errors
of the mean spectral densities. The results are shown in Table 15 and
Fig, 21.

The difference of @ value between the two directions is negligible
at the periods of 200 sec and 90 sec. In between these periods, the
node direction shows greater @ values than the loop. Since the un-
certainity is great for the former, this difference is probably insignificant.
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Table 15, @ values of G waves with the limits of standard error
 Azimuthal range ~30° to 0°, 150° to 180° 0° to 45°
——— T ] i | L i B _
frea. (efe) | PEEOd G263 @ | @ | @ Gues| @ | @ | @
005 | 20 | 199 | o1 | 86 | 96 | 1.5 | 12 | 90 | 13
.0065 ! 154 2.42 92 85 99 1.55 186 151 219
.0080 ! 125 2.61 105 97 113 1.54 233 126 322
.0095 105 3.52 95 87 102 | 2.47 132 109 152
.0110 91 3.45 112 104 120 | 3.15 121 104 135
.0125 80 2.55 168 153 182 5.93 88 | 81 94
.0140 71 3.36 145 135 154 5.52 103 97 108
.0155 65 3.80 146 138 154 5.42 115 108 122
.0170 59 3.09 189 177 201 6.11 118 104 130
.0185 54 3.55 184 172 195 7.26 118 104 130
.0200 50 3.56 198 186 209 5.71 144 120 163

Period in sec

200 150 i00 80 60 50
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! \
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® oo 0-—--0
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(<] for azimuths O to 45°
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standard error for dazimuths
-30%t0 0", 150° to 180°
I !

005 .0l 0I5 .02
Frequency in c/8

Fig. 21 @ value determined from mean amplitude spectral
densities of equalized G2 and G3 waves., The range of standard
error is shown for the two azimuthal ranges; solid lines for the
loop direction (—30° to 0°, and 150° to 180°), dashed lines for
the node direction (0° to 45°).
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For shorter periods than 90 sec, the node direction shows smaller ¢ value
than the loop, for which there is a sudden increase of @ at about 90 sec,
We hesitate, however, to attribute this difference to the real difference
of dissipation characteristics of crust-mantle structure, because we are
not sure that the effect of constructive and destructive interferences is
eliminated from the mean spectra to that accuracy. We must be satisfied,
for the present, by stating that the apparent @ value of G waves can
vary from 100 to 200 for periods from 200 to 50 sec.
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