Seismo-acoustic studies at the Earth's surface and in the atmosphere

Michael A. H. Hedlin Laboratory for Atmospheric Acoustics University of California, San Diego

Content

- Brief review of infrasound
- Societal relevance of infrasound today
 - e.g nuclear and hazard monitoring
- Recent studies
 - Common ground with seismology
- Grand challenges
 - How cooperation with seismic community can help

Some Infrasound Sources

Sound Propagation

• Battle of Luca, September 19, 1862

Annual Mean Sound Speed (Equator to 80 N)

 Propagation through unsteady atmosphere is known to be complex

Infrasound and Seismic Event Catalogs

IS bulletin (2000-2007)

EMSC bulletin
Non-earthquakes reported events
(1998-2005)

4874 events

18 160 events

LRSPS Workshop Denver, Sept 18, '08

Vergoz et al., 2007

Observed performances: Seasonal effects

Winter

Summer

75%

25%

15%

85%

LRSPS Workshop Denver, Sept 18, '08

Vergoz et al., 2007

Infrasound Detection

Wind noise key

LRSPS Workshop Denver, Sept 18, '08

IMS Infrasound Network

Societal relevance

- · Societal relevance of infrasound today
 - Nuclear monitoring
 - Hazard monitoring
 - Volcanoes
 - · Storms
 - Avalanches
 - · Tsunamis
 - · Wildfires
 - Tragic events e.g. Columbia
 - Basic research

Some recent studies

Earthquake studies

Le Pichon, 2005

Infrasound measurements at I08BO, I09BR and I41PY

Le Pichon, 2008---M7.8 Northern Chile, June 13, 2005

[Lee et al., 2004]

M7.0 East Coast of Honshu, Japan CHNAR: 1300 km May 26, 2003

Duration: ~40 min

Radiating zone: ~1200 km

[Lee et al., 2004]

Monitoring and Studying Volcanoes

Acoustic Surveillance of Hazardous Eruptions (ASHE)

Operational Concept

Low-level tremor (top), explosions and tremor (middle), Vulcanian->Plinian (bottom)

Studies of Atmospheric Events using the USArray

Atlantis

Propagation

Profile to NW of shuttle track

Time after 19:00 UT (s) de Groot-Hedlin et al., 2008

The USArray and the Oregon bolide

Grand challenges (part 1)

- Test and refine our models of atmospheric structure
 - Increase station density
 - Ground-truth more sources
 - Co-locate atmospheric pressure sensors with seismic stations
 - Would help in many other areas (e.g. mechanical coupling between atmosphere and solid Earth, nature of acoustic noise, infrasound propagation modeling

More seismo-acoustic networks?

· e.g. SMU/IRIS effort underway

More seismo-acoustic networks?

- · e.g. SMU/IRIS effort underway
- Can we do this on a larger scale?
 - Single sensors with interspersed arrays?
 - Begin at a "modest" scale?
 - Still time to begin with the USArray?

Grand challenges (pt. 2)

- Improve our ability to characterize near-surface and atmospheric processes using infrasound and infrasound with seismic
 - There is a rich interface between infrasound and seismic
 - · e.g. the study and monitoring of volcanoes

AtmoScope - A. Muschinski

- GPS meteorology
- Atmospheric tides
- Free oscillations
- NWP
- Mesoscale meteorology and regional climate
- Limnology, hydrology, gravimetry and geodesy
- Adaptive seismometry
- · Natural Hazards
- Meteor physics and CTBT monitoring

Concluding comments

- Information about seismic events can be carried by atmospheric signals and vice versa
 - Much common ground between the two disciplines
- Grand challenges
 - Many scientific issues could be addressed by increasing acoustic station density & co-locating these stns with seismic
 - e.g. atmospheric structure -> atmospheric propagation
 - · e.g. hazard monitoring
 - · e.g. mitigating seismic noise from atmosphere

