Crust and Lithosphere

• Our Charge
 – description of scientific problems
 – importance for broader society
 – importance of the topics within Earth and other sciences
 – existing and required resources for fundamental advancements
Crust and Lithosphere

• The Overriding Theme
 – Stewardship of Earth by Assessing Hazards, Discovering Resources, and Understanding Continental Evolution
Problem 1) The Role of Fluids in Earth Processes

- **Key questions:**
 - What is the fluid cycle of the Earth at all scales?
 - How do we know fluid is there?
 - How do seismic waves propagate in multiphase materials?
 - How does fluid relate to the spectrum of deformation (earthquakes, ETS, creep, etc.)?
 - What is the magma plumbing system and how does it evolve?
 - How do fluids respond to tectonic processes?
Problem 1) The Role of Fluids in Earth Processes

• *Societal Impact*
 – Monitoring groundwater resources (3-D and 4-D)
 – Petroleum resource exploration (improving methods to promote/enhance hydrocarbon extraction)
 – Carbon sequestration
 – Geothermal energy and connections to magma migration
 – Volcanic hazards (differentiating between explosive and non explosive eruptive systems by examining plumbing structure and composition)
Problem 2) Understanding the Earthquake Cycle

- **Key questions**
 - How do tectonic and other Earth processes influence the earthquake cycle?
 - What is different for intraplate earthquakes?
 - What happens right before an earthquake?
 - What are the temporal variations in Earth structure that relate to seismogenesis?
Problem 2) Understanding the Earthquake Cycle

• *Societal Impact*
 – Temporal monitoring of earthquake hazards to move towards forecasting
 – Assessing potential sites for nuclear power
Problem 3) Linking Rheology, Deformation and Tectonics

- *Key questions:*
 - What is the structure of faults systems (particularly the deep part)?
 - How do fault systems evolve over short and long time scales?
 - Where is the deformation, either seismic or aseismic, now and in the past?
Problem 3) Linking Rheology, Deformation and Tectonics

• Key questions:
 – What is the nature of the lithosphere-asthenosphere boundary and how does it evolve through time?
 – What is the rheology of middle and lower crust and how variable is it?
 – What is the coupling of plate motions with mantle flow?
Problem 3) Linking Rheology, Deformation and Tectonics

- **Societal Impact**
 - Earthquake hazards
 - Better understanding of landscape evolution
Problem 4) Evolution of Continents

- **Key questions:**
 - How do continents grow?
 - How is the crust and lithosphere created and destroyed?
 - What is the nature of the continental crust mantle boundary and how does it evolve through time?
 - What causes mountain uplift?
 - What are the earth processes that cause resources and mineral deposits?
Problem 4) Evolution of Continents

• Societal Impact
 – Exploration for ore deposits
 – Societal wonder about what created the material they live on
 – Help people to discover the subsurface the way they now investigate the surface via google earth
Additional Problems

• We need to determine or estimate a 3D earth model to deterministically predict path effects on ground motions to high enough fidelity for engineered structures and for precise nuclear monitoring.

• To better characterize normal and anomalous in the Earth’s crust, we need more uniform mapping of its structure.

• Seismology can lead the transition from providing technologies for exploration of nonrenewable resources to technologies for exploration of cleaner energy sources.
Importance to Earth and other sciences

- *Earth and other sciences:*
 - hydrology
 - economic geology
 - volcanology, geochemistry, petrology
 - tectonics and structural geology
 - mineral physics
 - rock mechanics
 - fluid mechanics
 - structural engineering
 - biology at depth
Importance to Earth and other sciences

• *Importance:*
 – In situ measurements of physical properties in difficult or impossible to access parts of the Earth
 – Surficial geologic techniques tell us about area, 3-D velocity structure can tell us about volumetric distribution
 – 4-D examinations of how Earth structure evolves over time is needed to better connect it to the broader spectrum of Earth processes
Existing and Needed Resources

- **Data Recording**
 - More: sensors, coverage, channels
 - Cheaper seismometers/OBS/arrays
 - All receivers should be (at least) 3 component
 - Hybrid passive/active surveys (4D results)
 - The “Perfect” seismometer: Zero mass, zero power, infinite band, real-time telemetry, biodegradable
 - Integrated sensor observatories (seismometer, strainmeter, tiltmeter, barometer, ect.)
 - Applications to planetary seismology
Existing and Needed Resources

• Datasets
 – Database and dataset preservation from industry and other sources (i.e., industry data mining)
 – Model standards, not just common data formats
 – Balance between active and passive techniques

• Alternatives to traditional seismometry
 – Space-based (i.e., INSAR)
 – Ground and near ground-based (i.e., laser-based, radar-based, optical interferometry)
Existing and Needed Resources

• *Improved analysis methods*
 – Complete 3D wave methods
 – Multiple scattering approaches
 – Bridging the gap between region and global modeling
 – Integration of very different datasets
Existing and Needed Resources

- **Facilities**
 - Databases (storage, integration, interpretation; quicker access)
 - Source facility (to complement receiver facility)
 - Computing (e.g., full wavefield analyses)
Existing and Needed Resources

• **Education and Collaboration**
 – Training future generations for stewardship of Earth
 – Deeper connections with elementary/junior high/high school sciences
 – University-industry partnerships
 – Enhanced international collaborations
Existing and Needed Resources

• **Funding**
 – Need to generate new funding models with non-traditional partnerships
 – Federal (NSF, DoD, DoE, FEMA, NASA)
 – Industry (natural resources)
 – Foundations