

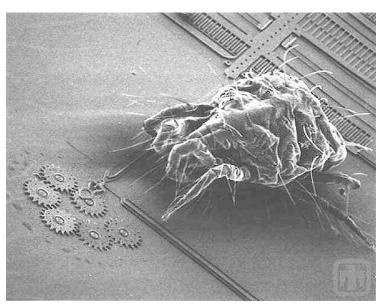
MEMS Applications in Seismology

Nov 11, 2009
Seismic Instrumentation Technology Symposium

B. John Merchant Technical Staff Sandia National Laboratories

Outline

- Overview of MEMS Technology
- MEMS Accelerometers
- Seismic Requirements
- Commercial Availability
- Noise & Detection Theory
- Current R & D Efforts
- Outlook


What are MEMS?

Micro-Electro-Mechanical Systems (MEMS)

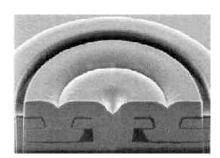
Features range from 1 to 100 microns.

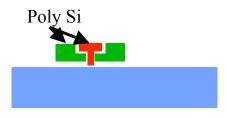
Similar fabrication techniques as Integrated Circuits (IC). However, MEMS fabrication is a trickier process due to the incorporation of mechanical features

Distinguished from traditional mechanical systems more by their materials and methods of fabrication than by feature size.

Courtesy of Sandia National Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov

What are MEMS?

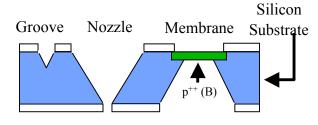

Materials	Fabrication	Applications
Silicon	Deposition	Automotive air bags
Single-crystal silicon makes a nearly perfect spring with very stable material properties.	Electroplating Evaporation Sputtering Lithography	Inkjet printers DLP projectors Consumer Electronics (Cell phone, Game Controllers, etc)
Polymers	Photo, Electronic, Ion, X-ray	Sensors (pressure, motion, RF,
Metals	Etching	magnetic, etc)
gold, nickel, chromium, titanium, tungsten, platinum, silver.	Wet Etching: Bathed in a chemical solvent Dry Etching: Vapor/Plasma	



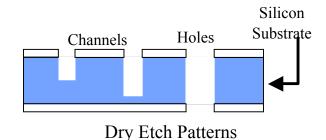
Three Dominant MEMS Microfabrication Technologies

Surface Micromachining

Structures formed by deposition and etching of sacrificial and structural thin films

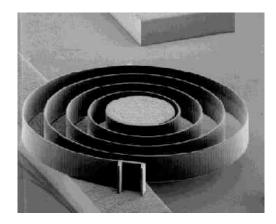


Silicon Substrate
Courtesy of SNL MEMS Technology short course


Bulk

Micromachining

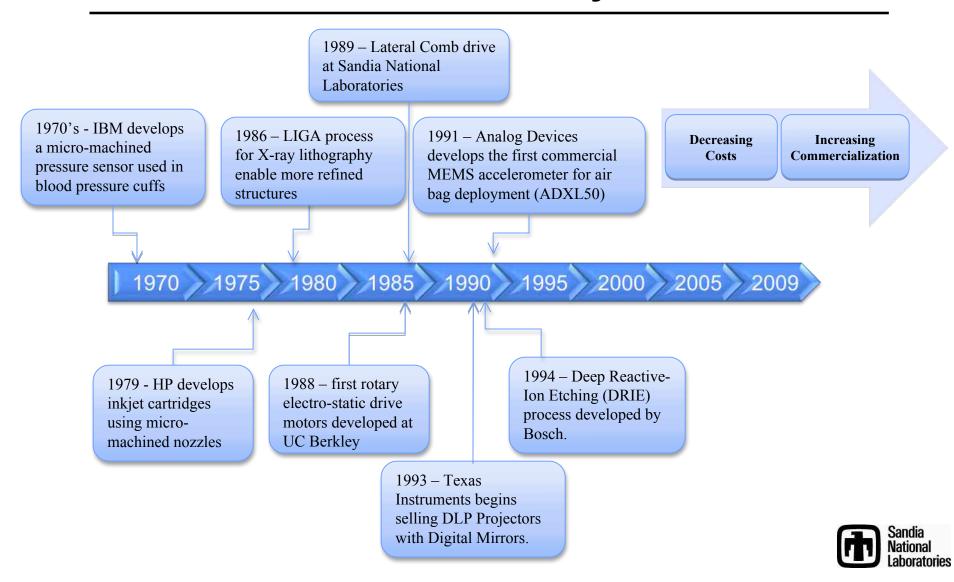
Structures formed by wet and/or dry etching of silicon substrate

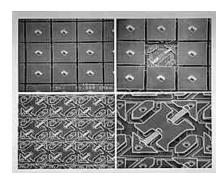


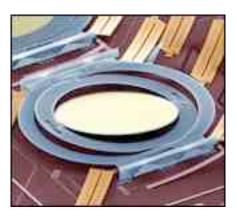
Wet Etch Patterns

LIGA

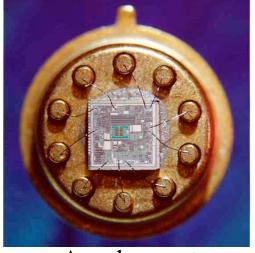
Structures formed by mold fabrication, followed by injection molding

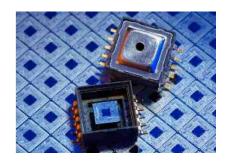




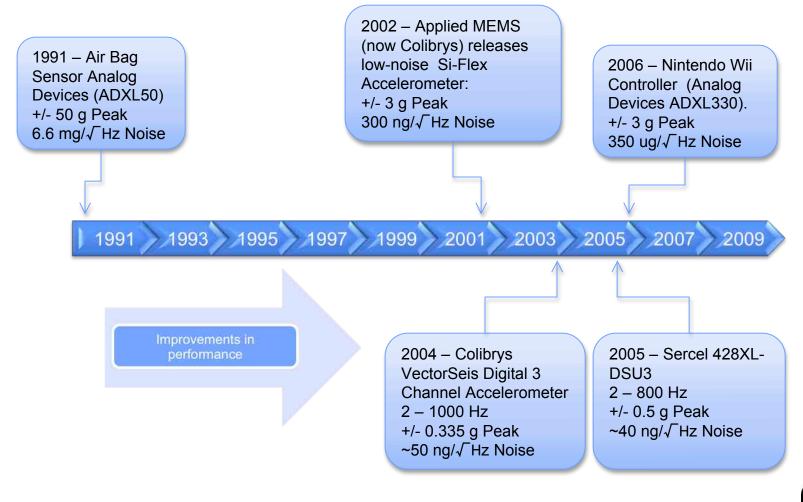

MEMS History

MEMS Commercial Applications


Digital Mirror Device
Texas Instruments

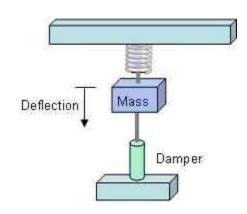

Micromirror switch
Lucent Technologies

Ink Jet Cartridge
Hewlett Packard


Accelerometer
Analog Devices

Pressure Sensor
Bosch MEMS

MEMS Accelerometer History



What makes a MEMS Seismometer

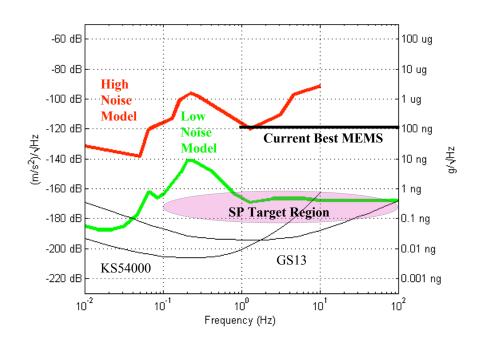
A MEMS Accelerometer with:

- Low noise floor (ng's/√Hz)
- ~1 g upper range
- High sensitivity

Modeled as a spring-mass system
Proof mass measured in milli-grams
Bandwidth below the springs resonant mode
(noise and response flat to acceleration)

Seismology Requirements

Noise floor


(relative to the LNM)

Peak acceleration

(Strong vs weak motion)

- Sensitivity
- Linear dynamic range
- Bandwidth

(short-period, long-period, broadband)

Requirements are ultimately application dependent

Strong Motion Requirements

Many of the strong motion requirements may be met by today's MEMS Acclerometers:

Noise	<1 ug/√Hz
Bandwidth	> 1-2 Hz
Peak Acceleration	1-2 g's
Dynamic Range	~100 dB

Weak Motion Requirements

Weak motion requirements are more demanding:

Noise	< 1 ng/√Hz
Bandwidth	SP: 0.1 Hz to 10's Hz LP: < 0.01 Hz to 1's Hz BB: 0.01 Hz to 10's Hz
Peak Acceleration	< 0.25 g
Dynamic Range	>120 dB

There are no MEMS accelerometers available today that meet the weak motion requirements.

Commercially Availability

There are many manufacturer's of MEMS Accelerometers.

Most are targeted towards consumer, automotive, and industrial applications.

Only a few approach the noise levels necessary for strong-motion seismic applications

Manufacturers

Analog Devices

Bosch-Sensortec

*Colibrys

*Endevco

Freescale

*GeoSIG

*Kinemetrics

Kionix

MEMSIC

*PCB

*Reftek

Silicon Designs

STMicroelectronics

Summit Instruments

*Sercel

*Wilcoxon

*Noise Floor $\leq 1 \text{ ug}/\sqrt{\text{Hz}}$

Colibrys

Formerly Applied MEMS, I/O. Oil & Gas Exploration

Produces VectorSeis which is sold through ION (www.iongeo.com)

Manufacturer	Colibrys	Colibrys	Colibrys	Colibrys
Model	SF 1500	SF 2005	SF3000	Digital-3*
Technology	Capacitive	Capacitive	Capacitive	Capacitive Force Feedback
Output	Analog	Analog	Analog	Digital
Format	Chip	Chip	Module	Module
Axis	1	1	3	3
Power	100 mW	140 mW	200 mW	780 mW
Acceleration Range	+/- 3 g	+/- 4 g	+/- 3 g	+/- 0.2 g
Frequency Response	0 – 1500 Hz	0 – 1000 Hz	0 – 1000 Hz	0 – 1000 Hz
Sensitivity	1.2 V/g	500 mV/g	1.2 V/g	58 ng/bit
Self Noise	$300-500$ ng/ $\sqrt{\rm Hz}$	800 ng/√Hz	300 - 500 ng/ $\sqrt{\rm Hz}$	100 ng/√Hz
Weight	Not Specified	Not Specified	Not Specified	Not Specified
Size	24.4 x 24.4 x 16.6 mm	24.4 x 24.4 x 15 mm	80 x 80 x 57 mm	40 x 40 x 127 mm
Shock Range	1500 g	1500 g	1000 g	1500 g
Temperature	-40 to 125 °C	-40 to 85 °C	-40 to 85 °C	-40 to 85 °C

*discontinued

Endevco, PCB, Wilcoxon

Not strictly MEMS, but they are small and relatively low-noise.

All three companies make fairly similar Piezoelectric accelerometers

Industrial and Structural applications

Manufacturer	Endevco	Endevco
Model	Model 86	Model 87
Technology	Piezoelectric	Piezoelectric
Output	Analog	Analog
Format	Module	Module
Axis	1	1
Power	200 mW	200 mW
Acceleration Range	+/- 0.5 g	+/- 0.5 g
Frequency Response	0.003 – 200 Hz	0.05 – 380 Hz
Sensitivity	10 V/g	10 V/g
Self Noise	39 ng/√Hz @ 2 Hz 11 ng/√Hz @ 10 Hz 4 ng/√Hz @ 100 Hz	90 ng/√Hz @ 2 Hz 25 ng/√Hz @ 10 Hz 10 ng/√Hz @ 100 Hz
Weight	771 grams	170 grams
Size	62 x 62 x 53 mm	29.8 x 29.8 x 56.4 mm
Shock Range	250 g	400 g
Temperature	-10 to 100 °C	-20 to 100 °C

Kinemetrics

Strong motion, seismic measurement

Force Balance Accelerometer

Available in single and three axis configurations

Manufacturer	Kinemetrics	Kinemetrics
Model	EpiSensor ES-T	EpiSensor ES-U2
Technology	Capacitive MEMS	Capacitive MEMS
Output	Analog	Analog
Format	Module	Module
Axis	3	1
Power	144 mW	100 mW
Acceleration Range	+/- 0.25 g	+/- 0.25 g
Frequency Response	0 – 200 Hz	0 – 200 Hz
Sensitivity	10 V/g	10 V/g
Self Noise	60 ng/√Hz	60 ng/√Hz
Weight	Not Specified	350 grams
Size	133 x 133 x 62 mm	55 x 65 x 97mm
Shock Range	Not Specified	Not Specified
Temperature	-20 to 70 °C	-20 to 70 °C

Reftek

Strong motion measurement for seismic, structural, industrial monitoring

Available in single, three axis, and borehole configurations

Manufacturer	Reftek
Model	131A*
Technology	Capacitive MEMS
Output	Analog
Format	Module
Axis	3
Power	600 mW
Acceleration	
Range	+/- 3.5 g
Frequency	0 - 400 Hz
Response	0 – 400 HZ
Sensitivity	2 V/g
Self Noise	$200~\mathrm{ng}/\mathrm{VHz}$
Weight	1000 grams
Size	104 x 101 x 101 mm
Shock Tolerance	500 g
Temperature	-20 to 60 °C
	<u> </u>


^{*} uses Colibrys Accelerometers

Sercel

Used in tomography studies for Oil & Gas Exploration Sold as complete turn-key systems and not available for individual sales

Manufacturer	Sercel	
Model	DSU3-428	
Technology	Capacitive MEMS	
Output	Digital	
Format	Module	
Axis	3	
Power	265 mW	
Acceleration	±/ 0.5 a	
Range	+/- 0.5 g	
Frequency	0 – 800 Hz	
Response	0 - 800 112	
Sensitivity	Not Specified	
Self Noise	40 ng/√Hz	
Weight	430 grams	
Size	159.2 x 70 x 194 mm	
Shock Range	Not Specified	
Temperature	-40 to 70 °C	

MEMS accelerometers

Advantages

- Small
- Can be low power, for less sensitive sensors.
- High frequency bandwidth (~ 1 kHz)

Disadvantages

- Active device, requires power
- Poor noise and response at low frequencies (< 1 Hz), largely due to small mass, 1/f noise, or feedback control corner.
- Noise floor flat to acceleration, exacerbates noise issues at low frequency (< 1 Hz)

Theoretical Noise

Two main sources of noise:

- Thermo-mechanical
 - Brownian motion
 - Spring imperfections

Electronic

- Electronics
- Detection of mass position
- Noise characteristics unique to detection technique

Thermo-mechanical noise for a cantilevered spring

$$a_n = \sqrt{\frac{4k_b T \omega_0}{Q \cdot m}} \frac{1}{\sqrt{Hz}}$$

Boltzman's Constant k_B =1.38x10⁻²³ J/K Temperature T = 300 K Resonant Frequency w_o =314.16 rad/s (50Hz) Quality Factor Q = 1000 Proof Mass m = 1 gram (10⁻³ kg)

$$a_n = 2.3 \times 10^{\circ}-9 \text{ m} / \text{s}^2 / \sqrt{Hz}$$

= 0.2 ng / \sqrt{Hz}

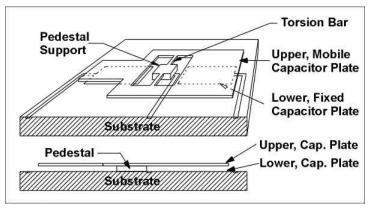
Traditional Seismometer	MEMS Accelerometer
Large mass (100's of grams)	Small mass (milligrams)
Thermo-mechanical noise is small	Thermo-mechanical noise dominates

Detection of mass position

Variety of ways to determine mass-position

- Piezoelectric / Piezoresistive
- Capacitive
- Inductive
- Magnetic
- Fluidic
- Optical (diffraction, fabry-perot, michelson)

Capacitive Detection


The most common method of mass position detection for current MEMS accelerometers is capacitive.

Capacitance is a weak sensing mechanism and force (for feedback contrl) which necessitates small masses (milligrams) and small distances (microns).

Feedback control employed for quietest solutions. Differential sampling for noise cancelation.

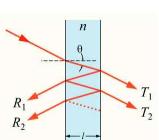
Colibrys bulk-micromachined proof mass sandwiched between differential capacitive plates

Silicon Designs capacitive plate with a pedestal and torsion bar.

R&D Challenges

- Large proof mass and weak springs required. This makes for a delicate instrument.
- Capacitance less useful as a detection and feedback mechanism for larger masses.
- Feedback control required to achieve desired dynamic range and sensitivity.
- R&D requires access to expensive MEMS fabrication facility
- 1/f electronic noise could limit low-frequency

- Several posters on display
- Additional details and proceedings available at http://www.monitoringresearchreview.com/
- Characteristics:
 - Significantly larger proof mass (0.25 2 grams)
 - Non-capacitive mass position sensing (inductive, optical, fluidic)
 - Feedback control

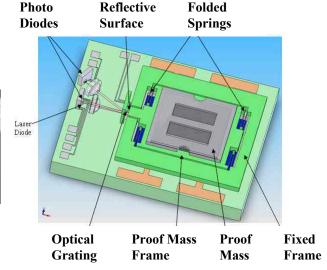


Kinemetrics / Imperial College

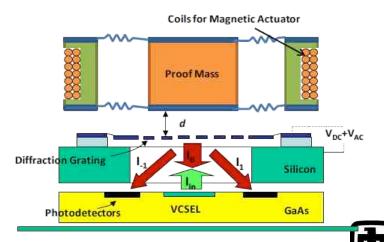
- Inductive coil with force feedback
- Proof mass of 0.245 grams
- 0.1 40 Hz bandwidth, resonant mode at 11.5 Hz
- Demonstrated noise performance of 2-3 ng/ \sqrt{Hz} over 0.04 0.1 Hz, higher noise at frequencies > 0.1 Hz

Symphony Acoustics

- Fabry-Perot optical cavity
- Proof mass of 1 gram
- 0.1 100Hz bandwidth
- Demonstrated noise performance of 10 ng/ \sqrt{Hz}
- Theoretical noise performance of 0.5 ng/ \sqrt{Hz}



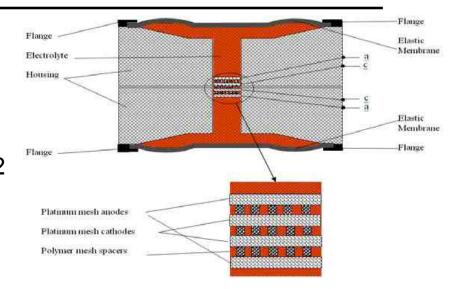
Sandia National Laboratories

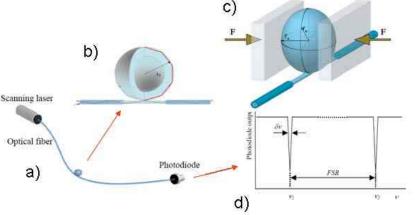

- Large proof mass (1 gram, tungsten)
- Meso-scale proof mass with MEMS diffraction grating and springs.
- Optical diffraction grating
- Theoretical thermo-mechanical noise 0.2 ng/ \sqrt{Hz} over 0.1 to 40 Hz

St. OSC OS of the land of the

Silicon Audio

- Large proof mass (2 gram)
- Meso-scale construction with MEMS diffraction grating
- Optical diffraction grating
- 0.1 to 100 Hz target bandwidth
- Theoretical thermo-mechanical noise $0.5 \text{ ng}/\sqrt{Hz}$ over 1 to 100 Hz



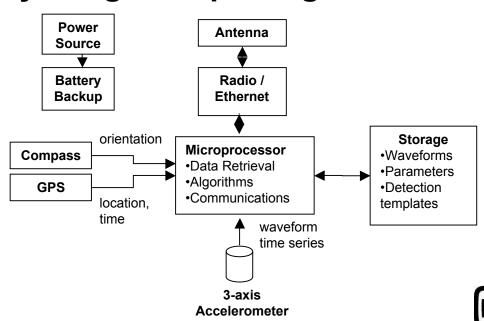

PMD Scientific, Inc.

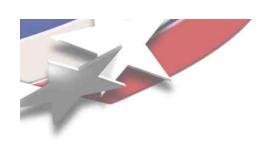
- Electrochemical fluid passing through a membrane
- Theoretical noise 0.5 ng/√Hz over 0.02 to 16 Hz

Michigan Aerospace Corp.

- Whispering Gallery Seismometer
- Optical coupling between a strained dielectric microsphere and an optical fiber
- Theoretical noise of 10 ng/ \sqrt{Hz}

5 year outlook


- Over the next 5 years, there is a strong potential for at least one of the DOE R&D MEMS
 Seismometer projects to reach the point of commercialization.
- This would mean a MEMS Accelerometer with:
 - a noise floor under the < LNM (~ 0.4 ng/ \sqrt{Hz})
 - Bandwidth between 0.1 and 100 Hz,
 - > 120 dB of dynamic range
 - -small (< 1 inch^3).
 - Low power (10's mW)



Enabling Applications

- Flexible R&D deployments
- Why simply connect a miniaturized transducer onto a traditional seismic system?
- Will require highly integrated packages:
 - Digitizer
 - Microcontroller
 - GPS
 - Flash storage
 - Communications
 - Battery

10 year outlook

- MEMS Accelerometers have only been commercially available for ~18 years.
- Where were things 10 years ago?

- Further expansion into long period (~ 0.01 Hz)
- Small, highly integrated seismic systems

Questions?

