Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics
from long and short period seismology?

Jessica C. E. Irving, Alex Burky & Frederik Simons, Princeton University
Sanne Cottaar, University of Cambridge; Vedran Lekić, University of Maryland
Wenbo Wu, Caltech; Sidao Ni, Chinese Academy of Sciences, Wuhan

JCEI acknowledges support from the NSF
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Earth’s outer core

Important role in Earth’s dynamics:
• Generation of the geodynamo;
• Provides heat to the mantle – part of the power source for plate tectonics.
• Is there stratification at the top? If so, why, when and how?

Existing seismological models of the outer core are not perfect. They are:
• Parameterized for simplicity, not grounded in physics;
• Based on older data;
• Show disagreement between body wave and normal mode based models;
• Therefore less useful for other scientists.

Velocity models published 1975–2010. Based on modes & body waves, or body waves alone.

Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Earth’s outer core – What can we do better?
Earth’s outer core – What can we do better?

We made a new model of the outer core’s seismic properties (v_p and ρ) and mineralogical properties.
Earth’s outer core – What can we do better?

We made a new model of the outer core’s seismic properties (v_p and ρ) and mineralogical properties.

- We expect the outer core to (mostly) comprise a well-mixed liquid. Assume this is true everywhere. Assume PREM does a good job for the rest of the Earth.
Earth’s outer core – What can we do better?

We made a new model of the outer core’s seismic properties (v_p and ρ) and mineralogical properties.

- We expect the outer core to (mostly) comprise a well-mixed liquid. Assume this is true everywhere. Assume PREM does a good job for the rest of the Earth.

- Look for the outer core's Equation of State, relating its bulk modulus and molar volume \rightarrow we get velocity and density.
We made a new model of the outer core's seismic properties (v_p and ρ) and mineralogical properties.

- We expect the outer core to (mostly) comprise a well-mixed liquid. Assume this is true everywhere. Assume PREM does a good job for the rest of the Earth.

- Look for the outer core's Equation of State, relating its bulk modulus and molar volume \rightarrow we get velocity and density.

- We end up with a physics based parameterisation.
We made a new model of the outer core’s seismic properties (v_p and ρ) and mineralogical properties.

- We expect the outer core to (mostly) comprise a well-mixed liquid. Assume this is true everywhere. Assume PREM does a good job for the rest of the Earth.
- Look for the outer core's Equation of State, relating its bulk modulus and molar volume → we get velocity and density.
- We end up with a physics based parameterisation.
- We can also use new data!
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Inversion for EoS & Seismic Parameters

Mode S_3
period ~ 18 minutes
Inversion for EoS & Seismic Parameters

Mode $_1S_3$
period ~ 18 minutes
Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

Mode νS_3
period ~ 18 minutes
Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

(1) Choose values of K_{0S}, K'_{0S}, and V_0 using PyMc
(molar mass assumed to be 0.05kg)

Mode 1_S^3
period ~ 18 minutes
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

(1) Choose values of K_{0S}, K'_{0S} & V_0 using PyMc (molar mass assumed to be 0.05kg)

(2) Using these EoS parameters, predict the outer core’s v_p, ρ, using Burnman.

Mode 1S_3
period ~ 18 minutes
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

1. Choose values of K_{0S}, K'_{0S}, and V_0 using PyMc (molar mass assumed to be 0.05kg)

2. Using these EoS parameters, predict the outer core’s v_p, ρ, using Burnman.

3. Predict mode frequencies using MINEOS

Mode $1S_3$
period ~ 18 minutes
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

1. Choose values of K_{0S}, K'_{0S} & V_0 using PyMc (molar mass assumed to be 0.05kg)
2. Using these EoS parameters, predict the outer core’s v_p, ρ, using Burnman.
3. Predict mode frequencies using MINEOS
4. Compare with observations

Mode $1S_3$

period ~ 18 minutes
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Inversion for EoS & Seismic Parameters

Goal: isentropic Vinet EoS & seismic model which best describe the data.

1. Choose values of K_{0S}, K'_{0S} & V_0 using PyMc (molar mass assumed to be 0.05 kg)
2. Using these EoS parameters, predict the outer core's v_p, ρ, using Burnman.
3. Predict mode frequencies using MINEOS
4. Compare with observations

Mode S_3
period ~ 18 minutes
Elastic Parameters of the Outer Core: EPOC–Vinnet

Elastic Parameters of the Outer Core: EPOC–Vinnet

Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Uppermost outer core structure – an E' layer?
Uppermost outer core structure – an E' layer?

- A large number of E' velocity models exist, nearly all are slower than PREM.
- Some of these models suggest a seismically anomalous layer. Our model explains the mode data with a smooth curve. But a layer might still be present!
Uppermost outer core structure – an E’ layer?

- The name E’ follows Bullen’s layer-naming convention
- Called the “Hidden Ocean of the Core” by Braginsky
- Buffett (2014, figure right) shows that estimates of flow at the surface of the outer core are predicted well by MAC waves; a 140 km thick layer works.
- May be the cause of signals in satellite observations of Earth’s magnetic field (Vidal and Schaeffer, 2015); and present in geomagnetic ‘jerk’ data (Chulliat et al., 2015).
- Other studies prefer no stratification, or cannot see its effect.

Figure 1 | Schematic illustration of the wave motion. Radial motion V_r causes a pressure perturbation, which drives an azimuthal flow V_θ in the stratified layer. The presence of a radial magnetic field opposes V_w and induces a meridional flow V_h. The fluid velocities reverse direction over a full cycle of the wave.
Permitting variation in D'' properties and an E' layer

EPOC–Vinet has 3 parameters
Permitting variation in D'' properties and an E' layer

- Using the same methodology, we can:
 - allow a distinct E’ layer, where v_p and ρ diverge from those of the well mixed outer core
Permitting variation in D\textasciitilde properties and an E' layer

- Using the same methodology, we can:
 - allow a distinct E' layer, where \(v_p \) and \(\rho \) diverge from those of the well mixed outer core

 and

 - let the seismic properties of the D\textasciitilde (\(\rho \), \(v_s \) and \(v_p \)) vary away from PREM towards the CMB.
Permitting variation in D" properties and an E' layer

- v_s and v_p in the D" decrease
- Need to see what body waves prefer
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Permitting variation in D'' properties and an E' layer

- v_s and v_p in the D'' decrease

- Need to see what body waves prefer
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Uppermost outer core structure – an E' layer?
Uppermost outer core structure – an E’ layer?

What might generate an E’ layer?

- Light elements concentrated by IC growth (e.g. Fearn & Loper, 1981, Gubbins & Davies 2013, Helffrich & Kaneshima 2013)
Uppermost outer core structure – an E' layer?

What might generate an E' layer?

- Light elements concentrated by IC growth (e.g., Fearn & Loper, 1981, Gubbins & Davies 2013, Helffrich & Kaneshima 2013)
- Mantle material dissolving into the OC (e.g., Buffett & Seagle, 2010, Nakagawa 2018)
Uppermost outer core structure – an E' layer?

What might generate an E' layer?

- Mantle material dissolving into the OC (eg Buffett & Seagle, 2010, Nakagawa 2018)
- Planetary core formation – a primordial feature (see Helffrich & Kaneshima 2013), or remnants of the moon-forming impact (eg Landau et al, 2016)
Uppermost outer core structure – an E' layer?

What might generate an E' layer?

- Mantle material dissolving into the OC (eg Buffett & Seagle, 2010, Nakagawa 2018)

- Planetary core formation – a primordial feature (see Helffrich & Kaneshima 2013), or remnants of the moon-forming impact (eg Landau et al, 2016)

- Immisible melts at OC conditions (eg Averson et al, 2019, figure right; but also Helffrich & Kaneshima 2004)
Uppermost outer core structure – an E' layer?

But what should it look like seismically?

Figure from Buffett & Seagle, 2010
Uppermost outer core structure – an E' layer?

But what should it look like seismically?

Figure from Buffett & Seagle, 2010

Figure from Brodholt & Badro, 2018

Maybe slow & light is possible?
Moving up to the MTZ

- The question of how convection behaves in the mantle and whether layering is present has been tackled for decades – with insights from geochemistry, geodynamics and seismology.
Moving up to the MTZ – P'•d•P'

- Asymmetric P'•d•P' can be used to probe the mantle transition zone.

Wu, Ni & Irving, Science, 2019
Moving up to the MTZ – $P' \circ d \circ P'$

- Asymmetric $P' \circ d \circ P'$ can be used to probe the mantle transition zone.

Wu, Ni & Irving, Science, 2019
• Asymmetric $P' \cdot d \cdot P'$ can be used to probe the mantle transition zone.

Wu, Ni & Irving, Science, 2019
Moving up to the MTZ – $P'dP'$

- We found very significant scattering from the ‘660 km’ discontinuity — it is much rougher than the free surface.

Wu, Ni & Irving, Science, 2019
We model the signal as coming from a 660 with substantial topography, but a thin layer of strong scatterers could produce a similar signal.
P'\(d\)P' and mantle convection

Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Wu, Ni & Irving, Science, 2019
Substantial scattering from the ‘660 km’ discontinuity — it is much rougher than the free surface.
Substantial scattering from the ‘660 km’ discontinuity — it is much rougher than the free surface.

Symptomatic of chemical heterogeneity & impaired convection between the upper and lower mantle.

Wu, Ni & Irving, Science, 2019
Substantial scattering from the 660 km discontinuity — it is much rougher than the free surface.
Symptomatic of chemical heterogeneity & impaired convection between the upper and lower mantle.

Wu, Ni & Irving, Science, 2019
Previous studies disagree about the genesis of the Bermudian Islands. We are looking under Bermuda using receiver functions.

We’re also developing a new receiver function metric to help assess receiver function quality.

Burky, Irving & Simons, in prep
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

- Previous studies disagree about the genesis of the Bermudian Islands. We are looking under Bermuda using receiver functions.
- We’re also developing a new receiver function metric to help assess receiver function quality.

Burky, Irving & Simons, in prep
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

- We’re developing a new receiver function metric to help assess receiver function quality.
- We find that Bermuda is underlain by a deeper than average ‘410’ km discontinuity, and a complex ‘660’ km.

Burky, Irving & Simons, in prep
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

- We’re developing a new receiver function metric to help assess receiver function quality.
- We find that Bermuda is underlain by a deeper than average ‘410’ km discontinuity, and a complex ‘660’ km.

See Alex Burky’s AGU presentation for more details!

Burky, Irving & Simons, in prep
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Project GuyotPhysics
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Project GuyotPhysics
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Project GuyotPhysics

With Profs
Frederik Simons, Princeton &
Alain Plattner, U Alabama
Long and short period seismology can be applied to look at the physical properties of the Earth at geodynamically important boundaries.

At the ‘660’, we see evidence of roughness, indicating imperfect mixing. This does not mean that material flow through the ‘660’ is absent, but it may be imperfect.

At the uppermost outer core, our EPOC outer core model reduces the need to have a slow E’, but when one is permitted it is favored. This suggests that there may be a compositionally distinct reservoir at the top of the outer core. The genesis mechanism for such a layer is still open.
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

EPOC–Vinet has 3 parameters: K_{0S}, K'_{0S}, V_0

Trade-offs with D'' properties
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

Trade-offs with D'' properties

EPOC–Vinnet has 3 parameters: K_{0s}, K'_{0s}, V_0

- Using the same methodology, we can let the seismic properties of the D'' vary away from PREM towards the CMB. In this example we fix how v_p and ρ vary as v_s changes.
- In this case the velocity changes a little but ρ changes more.
Behavior at the boundaries of our world: What can we learn about core and mantle dynamics from long and short period seismology?

EPOC–Vinet has 3 parameters:

\[K_0, K'_0, V_0 \]

Trade-offs with D'' properties

- Using the same methodology, we can let the seismic properties of the D'' vary away from PREM towards the CMB. In this example we fix how \(v_p \) and \(\rho \) vary as \(v_s \) changes.
- In this case the velocity changes a little but \(\rho \) changes more.
Body wave predictions for an E' layer

- Travel time anomalies are too extreme for rays which spend most of their time very close to the CMB → these model predictions may be too slow at the CMB when an E' layer is included.
What if we had used a Birch Murnaghan formulation?

- Velocity & density models obtained from the ensemble of Birch–Murnaghan EoS parameters are very close to those of EPOC–Vinet:
 \[|ΔV_p| \leq 0.02 \text{km/s} \quad \text{and} \quad |Δρ| \leq 0.001 \text{g/cm}^3. \]
- Different formulations give different extrapolations from core to ambient conditions result in different values for the EoS parameters.

Irving, Cottaar & Lekić, Science Advances, 2018
Why a linearized inversion might be problematic

- Non-linearity of the relationship between mode center frequency and elastic parameters of the core.
- Each symbol corresponds to a different mode used, and its size is proportional to the mode's sensitivity to outer core structure (%).
- Symbol color represents the magnitude of the non-linearity of mode frequency shift due to a 1% perturbation to outer core v_p, compared to uncertainty on the measurement due to mantle structure (which is nearly always greater than measurement error).

Irving, Cottaar & Lekić, Science Advances, 2018
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

EPOC–Vinet is homogeneous and stable

Irving, Cottaar & Lekić, Science Advances, 2018
Behavior at the boundaries of our world:
What can we learn about core and mantle dynamics from long and short period seismology?

Selected References

- Mode data:

- Other outer core models: