Exploiting commercial submarine cable systems for earthquake and tsunami monitoring – The Science Monitoring and Reliable Telecommunications (=SMART) cable concept

Frederik Tilmann (GFZ) & ITU/WMO/IOC Joint Task Force
Why?

Deeper slip (~35 m peak)
Miyazaki et al. (EPS 2011), land geodetic only

Shallower slip (~60 m peak)
Ito et al. (EPS 2011), land geodetic + GeoNet
Why?

Deeper slip (~35 m peak)

Shallower slip (~60 m peak)

Miyazaki et al. (EPS 2011), land geodetic only

Ito et al. (EPS 2011), land geodetic+GeoNet

Current tsunami DART data cannot always resolve: Illapel, Chile EQ 2015 (Mw=8.3)

Melgar et al (2016): Shallower (peak >10 m)
Why?

Deeper slip (~35 m peak)

Shallow slip (~60 m peak)

Miyazaki et al. (EPS 2011), land geodetic only

Ito et al. (EPS 2011), land geodetic+GeoNet

Current tsunami DART data cannot always resolve: Illapel, Chile EQ 2015 (Mw=8.3)

Melgar et al (2016): Shallower (peak >10 m)

Heidarzadeh et al (2016): Deeper (peak ~6 m)
Current DART buoys and M8+ eq since 1976

Cabled subduction obs.
Telecommunications cable: a missed opportunity (so far)

Cables offer power and bandwidth but: current cables are ‘deaf, dumb and blind’
=> add sensors
What is involved?

Sensors for initial phase:
- Pressure
- Temperature
- Accelerometer

In later phase: extension to other sensor types or plug-in port

Broad community relevance: subduction zone earthquake physics and tsunami triggering; early warning; whole earth tomography; climate science, oceanography, ...

Next steps: Wet Demonstrator
- Objective: Demonstrate viability within a commercial system
- Sea trial with at least 3 repeater elements
- Needs hosting seafloor observatory to 'plug in'
How does this relate to SZO?

• Wet demonstrator will deliver valuable science data if sited properly; could become integral part of an SZO site
• Recommendations for areas to prioritise (consultation)
• Data integration of eventual SMART cable data a necessity

Learn more:

• White paper + poster at this meeting:
• Summary of NASA workshop: http://www.soest.hawaii.edu/NASA_SMART_Cables/
Appendix
Costs (rough estimates!)

Wet Demonstrator
- Design: US$ 2 Mill
- Development: US$ +4 Mill
- Deployment: US$ +4 Mill => US$ 10 Mill

Production system
- 15% added cost over conventional cable to fit every repeater with sensors (Base cost for Trans-Pacific cable 10000 km)

Cost per sensor package 260,000 (25 year lifetime) => 10000 / year

Cf DART Program 27 Mill US$ / year (61 sensors: 435 000 per sensor / year)
Pressure sensor

Current Requirements
- Max drift: 0.2 dbar/yr (0.2 m / yr)
- Noise floor 0.14 Pa^2/ Hz

~25x100 mm

Quartz Sensors Solutions

- Pressure, acceleration, tilt, (Temperature internal)
- Pressure drift solution – wrt internal pressure
- Sampling rate: 20 Hz => ~1kb/s (w. overheads)

Courtesy J. Paros, P. Migliacio
Optical Accelerometers

- Uses optical interferometry
- 3-axis
- 30 mm diameter
- Passband 0.1-1000 Hz
- Noise: 3ng/sqrt(Hz)
- Proposed sampling rate: 200 Hz => with overhead ~18 kb/s