Automatic detection and cataloging of global explosive volcanism using the IMS infrasound network

Robin S. Matoza¹, David N. Green², Alexis Le Pichon³, David Fee⁴, Peter Shearer⁵, Pierrick Mialle⁶, and Lars Ceranna⁷

¹Department of Earth Science, University of California, Santa Barbara, CA, USA
²AWE Blacknest, UK
³CEA/DAM/DIF, France
⁴Wilson Alaska Technical Center and Alaska Volcano Observatory, University of Alaska Fairbanks, AK, USA
⁵Scripps Institution of Oceanography, University of California, San Diego, CA, USA
⁶CTBTO, Vienna, Austria
⁷BGR, Hannover, Germany

Explosive volcanic eruptions are among the most powerful sources of infrasound observed on Earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. These eruptions can also inject large volumes of ash into heavily travelled aviation corridors, thus posing a significant societal and economic hazard. Detecting and counting the global occurrence of explosive volcanism helps with progress toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. This project aims to build a quantitative catalog of global explosive volcanic activity using the International Monitoring System (IMS) infrasound network. We are developing methodologies to search systematically through IMS infrasound array detection bulletins to identify signals of volcanic origin. We combine infrasound signal association and source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent infrasound signals in a global grid. This work represents a step toward the goal of integrating IMS data products into global volcanic eruption early warning and notification systems.

Detection of the June 2009 eruption of Sarychev Peak, Kuriles using IMS infrasound arrays (red triangles). The grid counts the number of infrasonic detections (pixels) linked with a trial source node on the Earth's surface. The red circle is the grid maximum and the magenta triangle is the true location of Sarychev Peak.