Constraints on radial anisotropy in the central Pacific upper mantle from the NoMelt OBS array

Joshua B. Russell, James B. Gaherty, Peiying (Patty) Lin, and Ge Jin

Observations of seismic anisotropy in ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70-Ma seafloor in the central Pacific with the aim of constraining upper-mantle circulation and the evolution of the lithosphere-asthenosphere system. Azimuthal variations in Rayleigh-wave velocity suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere, and we aim to evaluate whether radial anisotropy shows a similar pattern. We employ an array-based approach to measure Love-wave phase velocities across the array using seven shallow-focus events (< 25 km) with high signal-to-noise ratio and diverse azimuthal coverage. Our phase-velocity measurements suggest strong interference of the first two overtones for short-to-intermediate periods (20-50 s), while longer periods (>60 s) are mostly dominated by fundamental mode energy. We invert for V_{SH} using multimode Love wave Fréchet kernels to account for this strong overtone interference and combine these measurements with the NoMelt V_{SV} model to obtain estimates of radial anisotropy for the top 300km of the mantle. Through forward modeling of Love wave Fréchet kernels, we find a strong nonlinearity in fundamental-mode sensitivity due to the inferred low-velocity zone underlying the Pacific lid, where the shortest periods have almost no sensitivity within the lithospheric mantle with peak sensitivity at the base of the low-velocity zone. Additional forward modeling of Love wave sensitivity will be carried out to fully explore the effects of this nonlinearity on the inferred velocity structure. Additionally, we will apply a new technique exploiting a modified Helmholtz amplitude correction to separate the fundamental mode from the overtones for more robust measurements of radial anisotropy beneath the central Pacific.

Figure. Love wave phase velocity measurements averaged for seven shallow-focus events. Colors show synthetic phase velocities for the fundamental mode (T_0) and first four overtones (T_1-T_4) calculated using the Pacific Pa5 velocity model.