In the last decade, there has been increased interest in using seismology to characterize, locate, and quantify so-called non-traditional targets. For example, there have been documented successes in using seismograms to quantify the bedload transport of streams, the volume and failure mechanisms of rockfall, the location and size of bolides, and the location and frequency of lightning strikes. In this poster, I summarize our efforts on attempting to correlate seismic records to the power and direction of breaking ocean waves in the near-shore surf zone. The eventual goal of this work is to determine the efficacy of using seismic monitoring to remotely monitor beach processes such as erosion, accretion, and/or sediment transport. Note that seismic energy generated by breaking waves is not the same as microseism, which is generated by deep water ocean swell and generates energy in a much lower frequency band. Indeed, we observe that breaking waves in the near-shore generate seismic waves in passband of 5-80 Hz. In two separate experiments, we see a correlation between the spectrum of the high frequency seismic energy and the local sea states. In the first experiment, we deployed a single three-component broadband seismometer approximately 50 m from the sea shore and recorded continuously for approximately 10 days. In the second experiment, we deployed an eight-station linear array of high frequency seismometers in the dune field immediately adjacent to surf zone and recorded continuously for three weeks. In both cases, we observed that during elevated sea states, and presumably larger breaking waves in the surf zone, the power spectral density of the wave-generated seismic energy shifts to lower frequencies and higher spectral amplitudes. A loose correlation between the seismic spectral power to the height and period of ocean waves suggests that seismic observations may be used as a proxy for local sea states. However, we found that traditional measures of ocean waves, in the form of significant wave height, H_{m0}, and dominant period, S, misses a wealth of information about the ocean wave field, leading to only very loose correlations between the observed seismic spectrum and H_{m0} and S. Rather, we found that the seismic energy is much more closely correlated to ocean wave spectral energy, suggesting that future work must include higher resolution measurements of ocean waves in the form of water-surface height time series or underwater acoustic monitoring of the surf zone. Finally, by using the linear array and conventional beam forming techniques, we observe a potential correlation between the resolved linear slowness with the direction of shallow water swell as measured by a nearby underwater pressure array maintained by the U.S. Army Corp of Engineers.