MULTI-USE MULTI-USER COLLABORATIVE RESOURCES
STATION -> NETWORK -> FEDERATION

Intentions and un-intended consequences

- **Station**
 - Exchange phases, records
 - WWSSN / ISC model - film-chips, bulletins, catalogs
 - Collaborate on experiments

- **Regional/National Networks**
 - Exchange event data
 - Real time streaming
 - Archival access through common data center (IRIS)

- **Federation**
 - “Formal” federations
 - FDSN - IRIS – Full/restricted access
 - NEIC – real time monitoring
 - Contributed data

- **Station**
 - Individual and institutional interests
 - WWSSN – nuclear monitoring
 - Global seismology and plate tectonics

- **Regional/National Networks**
 - National e’quake monitoring needs
 - Enhanced research applications
 - Global exchange and standardization

- **Federation**
 - Global tomographers and USGS
 - Free and open data exchange
 - Enhanced scientific and technical exchanges
BEYOND NETWORKS AND FEDERATIONS

“Networks without borders”
- Common interests - research and hazard applications
- Continental Scale
- Project and processes beyond national boundaries
- Mutual support for growth and enhancement
- Commitment to
 - Common standards
 - Open data exchange

Opportunity for seismology to lead in open scientific collaborations
- Seismology as a global and international science
If we assume (from USArray/TA, CEUSN, CNS etc)

- $50-100K/station hardware, installation materials
- $20-50K/station/year data collection only (not analysis or processing)

50 station network
- $2.5 – $5.0 M capital investment
- $1.0 – $2.0M annual operational cost

100 station network
- $5 – $10M capital investment
- $2 – $5 M annual operational cost
REALITY CHECK

- **GRO-Chile Budget**
- **10 station backbone network**
 - BB seismic, strong motion, infrasound, metpack
- **Total budget $1.4M**
 - $1M from NSF + $400K cost share from UChile
 - 10 stn network and 3 yrs shared O&M
 - 10 * $50K + 3*10*$30K
 - $500K + $900K
 - $1.4M
NOMINAL COSTS

- 100 station network
 - $5 – $10M capital investment
 - $2 – $5 M annual operational cost

Large investments
- well outside the funding level for individual PI projects
- possible in highly competitive realm of “big science”
But - -
- not significant in major national infrastructure development
- not significant in cost of response to major disasters
And
- most appropriate for funding from multi-use, multi-sector support for hazard mitigation/response and research.
Challenges and Opportunities

- Engage and inform policy makers
- Encourage balance between research and mission activities
- Listen to lessons from the past
 - Implement phased development
 - Utilize appropriate and stable technology
 - Prepare, sustain and follow through
- Leverage diversified support
- Set standards and encourage mutual collaboration
 - Encourage open data exchange
- Seek productive collaborations – internal and external
 - Develop collaboration that are bilateral and symmetric
- Evolve the focus from:
 - Hardware → to quality data → to knowledge → to practice