The Transportable Array (TA) element of the EarthScope Under-
ner project is a grid of seismometers that are “tilling” stations serviced
across the U.S. over a ten-year period. The stations of the TA are
located in a grid of 20 km (12 mile) square sites. Each station
resides at an average location for about three years and then is re-
locatable to another site along the leading (northeast) edge of the
array. The northeast edge of the array now extends from Florida
north to Michigan. Every ten months seismometers
transmitting data continuously on the Internet.

The TA network consists of equipment in the public
worldwide, and is used in a wide range of research and outreach
activities. Each TA station is one hosted by a
private, academic, or non-governmental organization and
monitored and maintained by personnel.

The IRIS Array Advisory Committee manages the
array. The TA stations are located on a grid, with 70 km (45
mile) spacing between sites. Each station consists of a
seismometer, a broadband sensor, and a communication
terminal. The easternmost edge of the array now extends from Florida
to Michigan. Every station operates 24x7,
performing a variety of research and outreach activities.

Transportable Array

Magnetotellurics

The Magnetotellurics, BATS component of the EarthScope Under-nder project has been making continuous observations at seven permanent MT observation sites that join the USArray as well as at the latest MT observations on the natural variations in the Earth’s magnetic field caused by solar activity and
lightning. The Magnetotellurics site includes an indoor and outdoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
laboratory where students can observe solar and lightning activity
in the region. The Magnetotellurics site also includes an indoor
labo...
Portable Seismology

IRIS facilitates portable seismology worldwide for diverse scientific and educational communities, with an underlying foundation of seismological instrumentation and advanced field and laboratory techniques. IRIS operates and supports the PASSCAL, GSN, and related regional networks, and provides support and direction for observing Earth's deep interior through seismology and geodynamics. IRIS also conducts comprehensive research on the seismic processes that underlie earthquakes and hazards. IRIS supports a diverse, collaborative, and broad-based research community that includes educational and research institutions, governmental agencies, and industry. This community conducts research to understand seismo-tectonic processes, to assess earthquake hazards in the United States and worldwide, and to conduct a wide range of basic and applied seismological research.

Data Services

The Data Management Office is one of the largest scientific archives of globally distributed observational data in the world, with data from more than 150 networks operated by US agencies and partner organizations worldwide. Archiving and management of GSN, PASSCAL, EarthScope, DSN, Regional Network, and OBIS data is the core mission. IRIS offers a wide and growing variety of services that further enhance its richly distributed data via web services is increasingly important. During 2012 – 2013 we will see data to scientists as richly.

Standing Committee

The Global Seismologic Network is a permanent international network of state-of-the-art seismological and geophysical sensors. A foremost source of live and open data for seismological research and Earth science education, the network is a principal global source of data for earthquake location, earthquake hazard mitigation, earthquake emergency response, and tsunami warning. Current work is underway to update the PASSCAL stations, as networks grow to the next generation of acquisition, sensor, and infrastructure systems, as well as the implementation of a research data quality assurance system to improve data quality and data return. Updated stations have shown improved quality and optimized operations. The GSN is primarily supported and maintained through the US Geological Survey Seismic Networks Program and the USGS, Pacific Disaster Center.

OBIS Management Office

The Ocean Bottom Seismic Instrumentation Pool provides ocean bottom seismometers to support research and training involving seismological, tsunami, and geodynamics. Instruments include both broadband systems for long-term subducting, passive experiments, and short-period systems that are better suited for active experiments studies in conjunction with vessels towing airgun arrays.

OBIS Oversight Committee

The web site of GSN products created by the OBIS includes visualizations of passive data acquisitions across the Transportable Array. Rayleigh waves from the deadly Tohoku-Oki earthquake of March 2011 are used to visualize wave propagation across the Transportable Array.

OBISOBIS

OBSIP Oversight Committee

The Global Seismic Network is a permanent international network of state-of-the-art seismological and geophysical sensors. A foremost source of live and open data for seismological research and Earth science education, the network is a principal global source of data for earthquake location, earthquake hazard mitigation, earthquake emergency response, and tsunami warning. Current work is underway to update the PASSCAL stations, as networks grow to the next generation of acquisition, sensor, and infrastructure systems, as well as the implementation of a research data quality assurance system to improve data quality and data return. Updated stations have shown improved quality and optimized operations. The GSN is primarily supported and maintained through the US Geological Survey Seismic Networks Program and the USGS, Pacific Disaster Center.

OBIS Management Office

The Ocean Bottom Seismic Instrumentation Pool provides ocean bottom seismometers to support research and training involving seismological, tsunami, and geodynamics. Instruments include both broadband systems for long-term subducting, passive experiments, and short-period systems that are better suited for active experiments studies in conjunction with vessels towing airgun arrays.

OBIS Oversight Committee

The web site of GSN products created by the OBIS includes visualizations of passive data acquisitions across the Transportable Array. Rayleigh waves from the deadly Tohoku-Oki earthquake of March 2011 are used to visualize wave propagation across the Transportable Array.

OBIS OBIS

OBISOBIS