We present a new analysis of seismic energy based on tremor amplitudes in Washington state. The seismic energy release of non-volcanic tremor has not been fully quantified due to the complex nature of tremor. However, understanding the pattern of energy release is an important piece of the tremor puzzle. For larger ETS (episodic tremor and slip) events, the duration of tremor is observed to be a good proxy for slow slip seismic moment as estimated geodetically (Aguiar et al. 2009, Wech et al. 2010). Tremor duration, however, does not tell the whole story. For example, even during times of near-continuous tremor, amplitudes have been observed to be strongly modulated by tidal forcing (Rubinstein et al. 2008). We extend these past observations to a new data set in order to better understand this tidal forcing. Similarly, energy-based analyses shed light on what happens at the onset of tremor. Tremor amplitudes typically ramp up during the early days of a large tremor episode, perhaps as the faulted area grows. Quantifying released seismic energy is also a component of determining how slow slip events fit into earthquake scaling laws; the question of whether accumulated energy is a better measure of slip than event duration is an open question. In the future, we will further address this question by comparing spatial variations in energy release across different ETS events. Spatial patterns in patches of concentrated seismic energy release may have implications for the distribution of slip and the mechanism of tremor.