Broadband data processing with Matlab

Background

Broadband instruments are velocity sensors, which record data over a large range of frequencies (typically tens of Hz to around 0.01 Hz or lower). Early observatories would typically consist of multiple instruments sensitive to various frequency bands to replicate a broadband overall response. Because different Earth processes excite energy at various frequencies, understanding and broadening the response spectrum of instruments allows for observing more phenomena. 

Modern digital broadband data of high quality has been continuously recording globally since around 1980. There are roughly 150 permanent broadband observatories associated with the IRIS Global Seismographic Network (GSN) and a number more in various other global and regional networks. The Transportable Array arm of the Earthscope-USArray consists of 400 broadband stations rolling across the USA and the Flexible Array arm also consists of about 400-targeted stations operating with the Transportable Array.  IRIS PASSCAL also continuously supports on the order of 500 additional broadband seismic stations operating in temporary experiments throughout the world, typically deployed for weeks to years.

Broadband seismographs have the advantage of high sensitivity over a large range of possible frequencies and a large enough dynamic range to record weak signals from distant earthquakes to relatively strong signals from exceptionally large and or nearby earthquakes or other sources. To reduce the effect of local or regional background “noise” caused by local vibration sources, wind, or temperature variations, sensors are carefully installed in environmentally isolated and quiet locations. Many permanent observatories are built into the sides of mountains at high cost and in other remote locations to isolate them from noise sources, and many GSN sensors are deployed in boreholes at depths of 100 m or deeper. 

This worksheet is part of a zip file porritt_broadband_processing_matlab.zip which also contains folders for data (with subdirectories of data for each exercise), functions which were created to facilitate this exercise, and the matTaup toolkit.

Objectives

By the end of this session students should be able to:

· Feel comfortable manipulating time series data in a processing environment (Matlab)

· Be able to convert data from the raw format in digital counts to true ground motion

· Filter seismograms for analysis within various frequency bands

· Isolate ground motion from teleseismic earthquakes

· Visualize anthropogenic sources of noise on records

· Understand the full spectrum of data returned by broadband instruments
Preprocessing
(note: in the following sections, italics imply commands at a terminal or Matlab command prompt. Unix/Linux/Matlab are case-sensitive so you should use all lowercase in the functions below.)
To get started, copy the Matlab functions from:

porritt_broadband_processing_matlab/functions

to your path with the command at a linux/unix terminal:

cp porritt_broadband_processing_matlab/functions/*m /home/USERNAME/work

The data is in the very commonly used SAC (for Seismic Analysis Code) data format. 

There are prepared SAC data files in the directories:

porritt_broadband_processing_matlab/data/exercise_?
Our first task is to read the data and convert it to true ground motion. The data file is in exercise_1. Open Matlab by typing matlab from a terminal

0. Read the data into Matlab: [time,data,header] = readsac(‘porritt_broadband_processing_matlab/data/exercise_1/YBH.BK.BHZ.SAC’);
a. If this fails try:  [header,data] = load_sac(‘porritt_broadband_processing_matlab/data/exercise_1/YBH.BK.BHZ.SAC’);
1. Remove the mean: dd=rmean(data);
2. Remove a linear trend: ee=rtrend(dd);
3. Apply a 10% cosine taper (to remove edge effects): dd=cos_taper(ee);
4. Partially remove the instrument response (to make the response even more broadband): vel=transfer(dd,header(35),1/header(1), ‘porritt_broadband_processing_matlab/data/exercise_1/YBH.BK.BHZ.pz’,.001,15);
5.  Visualize the resulting seismogram by plotting: plot(vel)

In the event that readsac does not work, load_sac will return the npts variable as header.npts and delta as header.delta. Full information on both load_sac and readsac can be access by typing help load_sac or help readsac.  The HELP command will also give information about the parameters for the other functions used in this exercise.

The seismogram should now be in true ground velocity in m/s (depending on the pole-zero response file). Be careful with this as different poles and zeros files and different programs could transform the data to nm/s or cm/s. You should always ask, “Does the amplitude look reasonable?”  For example, teleseismic body wave (e.g, P or S) amplitudes are typically on the order of tens of microns per second near 1 Hz. What are the main differences between the original data brought in and the final velocity data? 

Integration and Differentiation

While most seismic data is recorded as velocity, there are also uses for acceleration or displacement data. Integrating velocity to displacement or differentiating to acceleration can be an unstable process (integration amplifies long-period noise, while differentiation amplifies short-period noise).

An easy way to implement integration is by transforming into the frequency domain to obtain a spectrum, dividing this spectrum by 2i(f, and then transforming back to the time domain (where f is the frequency). Differentiation is done in a similar fashion, but with multiplication by 2i(f instead of division. 

To compute acceleration from velocity, we differentiate:

acc = freq_differentiate(vel, 1/header(1));

To compute displacement from velocity, we integrate:

dis = freq_integrate(vel, 1/header(1));

Plot the seismograms. Does anything look inexplicable?  What differences do you see between the displacement and acceleration responses?

Typically the integration to displacement can lead to large long period signals due to division by small numbers at the long period end. This can be filtered out (for example with a high-pass filter above 0.002 Hz):

filt_dis = hp_bu_co(dis, .002, 1/header(1),  4, 2);

Now replot filt_dis and you should see a seismogram without the energy at frequencies below 0.002 Hz.
Long Period Seismograms
One of the main advantages to using a broadband instrument is the high sensitivity to long period signals (signals at periods of 10s of seconds and longer). This is great for visualizing teleseismic earthquakes because the Earth acts as a low pass filter for signals traveling long distances (e.g., 1000’s of km).  Larger earthquakes also have lower corner frequencies (they generate more long period energy at the source), and higher frequencies attenuate more rapidly than longer periods. Finally, surface waves spread out only in 2-dimensions (across the surface of the Earth), while body waves spread out into the 3-d interior.  These factors mean that for large earthquakes and/or distances, long-period surface waves will typically be the largest signals, particularly for shallow earthquakes (which preferentially excite surface waves over body waves).

To analyze a long period record from an example teleseism, grab the data from:

porritt_broadband_processing_matlab/data/exercise_2

Files with “LHE” record motion in an east-west direction. Files with “LHN” record motion in a north-south direction and files with “LHZ” record motion in vertical up-down direction.
Preprocess the data as in exercise 1 for all three components so you have velocity seismograms in the vertical, north-south, and east-west directions.

The source and instrumentation information about the event is already in the SAC headers. For example, to see the source latitude, longitude, and azimuth stored in the vertical record (if loaded into Matlab with load_sac) with header variable named vertical_header type:

[vertical_header.evla, vertical_header.evlo,vertical_header.az]

If the data were imported into Matlab with readsac the syntax is :

[vertical_header(21), vertical_header(22), vertical_header(26)] 

As discussed earlier, Rayleigh waves principally show up on vertical and radial components, while Love waves principally appear on the transverse component. Rotating seismograms to obtain these horizontal component orientations is a fairly simple procedure and can be performed with the following function:

[radial,transverse] = rotate_to_gcp(east_data, north_data,east_header(26));

The function has multiple uses to account for east and north components not being at true north and true east or to return the angle rotated through (see the help documentation for more information).

Now plot the vertical, radial, and transverse components. How many phases could you pick? Do you see separation between the large amplitude long period Rayleigh waves and long period Love waves? Are there differences in the P and S arrivals on the different components?  

Expected travel times for various phases can be computed with the TauP toolkit. It’s a java code written by Phillip Crotwell at the University of South Carolina and is widely used. Installation and usage can be found at the end of this tutorial.

The broadband signal is probably still pretty messy due to the higher frequency seismic waves interacting with the structural complexities of the Earth. This signal can be substantially removed through a low-pass filter, e.g., one with a high corner at 20 seconds (1/(.05 Hz)), 4 poles, and 2 passes (or zero phased):

filt_z = lp_bu_co(vertical, .05, 1/vertical_header(1), 4, 2);

filt_r = lp_bu_co(radial, .05, 1/east_header(1), 4, 2);

filt_t = lp_bu_co(transverse, .05, 1/north_header(1), 4, 2);

Now replot the data and see if the phases appear more clearly. If they don’t, try refiltering.  This can be tricky, so explore the filter parameters and zoom level to get a better understanding of what the data can look like.

To examine what signal was filtered out above, you can, for example, perform a high pass filter at 2 Hz instead:

filt_z = hp_bu_co(vertical, 2, 1/vertical_header(1), 4, 2);

filt_r = hp_bu_co(radial, 2, 1/east_header(1), 4, 2);

filt_t = hp_bu_co(transverse, 2, 1/north_header(1), 4, 2);

This high pass filter during the passage of large amplitude surface waves technique was what recently led to the discovery of dynamically triggered local seismic events.
Anthropogenic noise

Careful seismologists can recognize noise based on human effects by understanding expected mean signal levels at various stations during various times. Data in

porritt_broadband_processing_matlab/data/exercise_3/BKS.BK.BHZ.SAC 

consist of high sample rate data from 4 am Tuesday to noon on Tuesday. Load and plot the data. You should observe a clear ramping up of amplitude as the day begins. This is made clearer by high pass filtering to emphasize high-frequency local noise:

filt=hp_bu_co(vel, 2, 1/header(1), 4, 2);

Replotting of the high-passed data should show the similar trend and may show some transient events, which look at first like very small local earthquakes, but are probably just vehicles passing the site.
Spectral Analysis
“Spectral” or “spectrum” are just cool ways of saying “signal displayed as a function of frequency”. The previous exercises have used the Fourier transform to manipulate data in the spectral domain and subsequently inverse transform back to the time domain. Examining spectral characteristics of signals can reveal everything from background noise to small-scale heterogeneous earth structure. No data files were specifically prepared for this exercise, so just grab your favorite waveform of the ones that we’ve used so far. 

The fundamental measurement of a single channel is the power spectrum. This is essentially the energy in the signal as a function of frequency, divided by the length of the signal. It is similar to the amplitude spectrum computed earlier, but it typically contains a scale factor to map the raw signal to power as a function of frequency (so that integrating the power spectrum across all frequencies will give the same power as integrating the corresponding time series across its full time extent).  Matlab has several internal power spectral density (PSD) estimation functions in the digital signal processing toolbox (e.g., from the relatively primitive welch, to the advanced pmtm).  I don’t like how it chooses to break up the given waveform, so my simple function to calculate a single power spectrum is:


pp = power_spectrum(vel,header(1));

Commonly we present a seismic power spectrum in terms of acceleration (this is because the natural background noise of the Earth including the ocean microseism, is “flattest” in this form). Therefore, after the preprocessing, differentiate to obtain an acceleration time series and then compute the power spectrum:


acc = freq_differentiate(vel,1/header(1)); 

app=power_spectrum(acc,header(1));

The output of power_spectrum is a function of frequency so we can make the companion array of frequency for plotting:


freq = zeros(1,length(app));


for j=1:length(app)



freq(j) = j  / (header(1) *  header(35));
end 

Now we can plot:

semilogx(freq,app)
I never like these plots as the high frequency component has too many data points. Therefore we can smooth:


smooth_app = smooth_1d_array(app,50); 
and replot with semilogx. What do you observe? Where are the highs and the lows? Can you see the primary and secondary ocean microseisms around 16 and 8 seconds, respectively?

In order to compute a more robust power spectral density, one common method (Welch’s method) is to break up the original waveform into several overlapping waveforms, compute, average, and smooth. This gives a trade-off between maximum period you can analyze versus robustness of the analysis.   A cleverer method (multitaper, or pmtm in the signal toolbox) utilizes a clever sequence of windowed versions of the time series that produce statistically independent estimates of the power spectrum that can be averaged into an optimal estimate.

A set of three closely spaced-sensors is an ideal situation for studying coherence and cross correlation. These functions are similar in formulation and computation, but give independent useful information. The most meaningful results will come from two separate stations recording during the same time period. It may be worthwhile to compare station A with station B during a noisy window and again the same stations during a teleseismic earthquake.

The coherence function is essentially a measure from 0 to 1 of how similar two signals are in the frequency domain (technically, how stationary their phase characteristics are). Matlab’s internal digital signal processing toolbox function, mscohere, makes similar assumptions and processes as the Welch function, and therefore I again wrote my own coherence function. It is called as:


coher = coherence(vel1,v el2, 1/data1(1), 1/data2(1));

To plot it, compute the frequency array coher as above and then use the semilogx command again. Where is the coherence high? Why? Where is the coherence low? Why?

The cross correlation function is one of the most widely used functions used in seismology and in signal processing generally. It is used to compute ambient noise greens functions, differential moveout times of earthquake arrivals, locations of tremors, etc. The function I’ve prepared computes the frequency dependent cross correlation, does an inverse Fourier transform, and rearranges the output to give the cross correlation amplitude as a function of lag time. I’ve also added an option to normalize the amplitude of the correlation. To compute the cross correlation and return for a lag time of [-5000, 5000] seconds use:


xcor = cross_correlate(vel1, vel2, 1/data1(1), 1/data2(1), 5000];
Plotting xcor from [-5000, 5000] will show the delay time required for a signal to travel from record1 to record2.  What is the delay time between the stations?  Can you use this to estimate the seismic velocity beneath the stations?

TauP toolkit

TauP is fairly widely used and openly available. A matlab interface written by Qin Li at the University of Washington is available at:


http://www.ess.washington.edu/SEIS/FMI/matTaup.htm
There are instructions to download and install it, but all you will have to do is link to it. I’ve put all the necessary sources in:

/wish/I/knew/the/directory

From there the code has a simple tree you can use to install. First open matlab and use:


edit classpath.txt

This opens up the classpath.txt file in the Matlab editor for you to edit. In the last line add:

above_dir/matTaup/lib/matTaup.jar
Then use this command:


path(path,’above_dir/matTaup’)


savepath

to have all the executable matlab functions working. The interactive gui is called:


taup

In the distance box, enter the distance in degrees (possibly stored in the sac header) and depth of the event in the depth box. You can choose various 1d velocity models, but the default iasp91 is ok. Hit the calculate button to find out the timing and various other parameters for various arrivals discussed before. 

The Path tab shows a radially symmetric earth model and the various travel time braches calculated. Play around with various models, distances, and depths. Or just input the distance and depths, which pertain to the event to calculate expected arrival times for your seismograms.
Plotting expected phase arrivals
I’ve created a plotting command to help in visualizing the results from taup. Its syntax is:


plot_phases(time, amplitude, origin_time, model_name, depth, phase, distance)

Check the help documentation and use this to visualize arrivals for the data for exercise 2. Feel free to edit the script to make the plots easier to view.
Forward Model with Generalized Ray Theory (ADVANCED)

In the inverse methods tutorial the general problem formalization was introduced:







d=Gm

and a tomographic method to solve it using least squares is explored. However, this can also be approached as a forward problem. Given knowledge of the physics to create G and reasonable estimates of the source and structural models, synthetic data can be computed mathematically. Generalized Ray Theory (GRT) can be used to create forward models of seismic data. This method approximates waveforms as a series of seismic rays which are added together and the superimposed arrivals create the overall synthetic waveform. By comparing the synthetic GRT data and recorded actual data it becomes more conceptually clear which wiggles on the record come from which seismic phase arrivals. This method is also useful if you have a good model of the seismic source or the velocity structure. You can then compute using what you know, perturb what you don’t know, and see how closely the synthetics match the recorded data.

To get started we need a structural matrix:


model_params = [0, 4, 17, 25; 2.4, 3.5, 3.9, 4.5, 2.0, 2.6, 2.8, 3.3]

This has three rows with parameters for each layer. The first row contains the depth, the second contains the shear velocity, and the third contains the density.

Next we need to know the parameters of the earthquake:


source_params = [11, 63.2,1.85*10^24, .25, 320.6, 323, 180, 90]

These parameters are depth (km), distance (km), M0 (erg), rise_time (seconds), back_azimuth, strike, rake, dip. 

The current function only computes the tangential component because it is the most simple having only SH energy expressed. Call the function with:


synth = GRT_calculator(model_params,source_params);
Now you can plot with:


plot(synth(:,1),synth(:,2));

To see how this might be useful, load the file bkst.ascii with the command:

bks_data = load(‘bkst.ascii’);

And plot this with the synthetic:


plot(synth(:,1),synth(:,2),’b’,bks_data(:,1),bks_data(:,2),’k’);

Assuming the source parameters are as given above, alter the velocity model, model_params, and recompute synthetics until you have a reasonable match.  The comments are fairly sparse, but the various plots which have been commented out in GRT_calculator.m may help show the formulation of the synthetics and they will show the various rays computed in isolation.

Now try altering the source parameters. What happens when you change the source depth (must stay in layer 2)? What happens when you change the distance? How would this alter estimated seismic hazard from this event?
