Process-Oriented Data Handling

Combining performance, flexibility, code reuse, and collaboration

Igor Morozov

igor.morozov@usask.ca
Examples are provided and also available from http://seisweb.usask.ca/igeos/pubs/USArray2009

Outline

- Six rules of the processing game
- Overview of IGeoS (SIA) system
- Examples of USArray data handling
- Homework
- Appendix: topics not covered today
Rule #1: Make processing reproducible

- Design your processing to be easily repeatable in 10 years
- Use batch flows
- Use self-documentation
- Maintain the software
Rule #2: Separate “processing” from “programming”

- Not all good geophysicists are good programmers
- Good code requires a lot of specialized effort
- Data organization may become daunting when hardwired in code
 - Code becomes not portable
Rule #3: Use “software system”

- Combination of many simple components
 - “User” focuses on data and tool interactions, not code
 - New code can benefit many tasks
 - Little duplication of coding
 - High code reuse and chance for spotting problems
- Common parameterization – easy to learn
 - Example: “sia job_name” – the only command I ever use
- Software maintained in consistent manner
 - “sia-update -build <item>” - the only command needed to compile anything
 - Many library classes readily available
 - Documentation and test examples
 - http://seisweb.usask.ca/igeos/index
Rule #4: Think “process”

- “Data access,” “filtering,” “modeling,” “inversion” are all special cases of “processing”
 - Use maximum (reasonable) data abstraction
- “Processing” is just using a combination of tools to achieve a certain result
 - To produce data files, images, publications, interaction with the user, etc.
 - If we learn to manage complex “processes,” we can probably solve *any* problem
- Note that the success of UNIX is due to a similar abstraction
Generalize tasks to help with other tasks in the future
 - For example, when reading a file:
 - think of reading many files at once
 - think of using UNIX pipeline filters.
 - Use flexible parameterization (trace headers, databases)
- This requires a lot of additional effort initially, but eventually magnifies the ability to handle data
Rule #6: Utilize powerful external applications

- SQL databases
- GMT (Generic Mapping Tools)
- PVM (Parallel Virtual Machine)
- OpenGL (open graphical modeling library)
- Qt (probably the most powerful cross-platform C++ graphics library and IDE)
Obeying these rules is not so easy
It requires years of consistent development
It requires a group of developers
Quiz

You have learned about the “traditional” (UNIX shell), “database-driven,” and “reflection processing” approaches

Which of them can incorporate the other two?
Quiz

- You have learned about the “traditional” (UNIX shell), “database-driven,” and “reflection processing” approaches
 - Which of them can incorporate the other two?
- “Commercial Reflection,” because it allows building custom executables for each processing task
 - But only if we generalize it to “academic” research problems
IGeoS system

- http://seisweb.usask.ca/igeos
- Used in *all* applications I have encountered so far
 - GPR, hi-res, reflection 2D/3D/4D, wide-angle, nuclear-explosion, earthquake, real-time seismic data
 - Field quality control and processing
 - Largest to date 3D survey with over 600 PASSAL “Texans” deployed daily
 - Potential-field and non-geophysical applications
 - Over 250 plug-in tools
- Now, principally a framework for code development, reuse and maintenance
Long-range PNE projects in U.S.S.R.

Note: controlled-source projects are not always small and simple!

- 22 PNEs
- 600 chemical explosions
Data example (PNE)
Learn from seismic industry

- Modern datasets:
 - 3D, 4D
 - 3C (three-component)
 - > 30,000 recording channels per shot
 - ~20,000 shots per survey
- Culture of digital data analysis
- Culture of software development
IGeoS History

- Over 15 years of intensive development
- Originally a replacement for DISCO (now Echos) reflection processing package
 - Started as a multicomponent wide-angle seismic interface for DISCO on VAX
 - Still supports DISCO job scripts
 - Much more general data and processing models
- Formerly called “SIA” (this name still mostly used inside)
Scope

- Basic seismic processing (like Seismic Unix)
- Synthetic waveform modeling (1D/2D/3D)
- 2D ray tracing (including Receiver Functions!)
- Migration (2D and 3D RF), Q tomography
- Well-log package
- Potential-field package
- Visualization system (3D, OpenGL)
- Real-time data system
- Web services
- Code-development collaboration system
Traditional seismic processing model

- The tools are connected by “data files” or “pipes” of some common format
- Data are fed in through an “input” and discarded on exit
- Examples: SAC, Seismic UNIX, ProMAX, DISCO
IGeoS processing model

- Instead of “pushing” trace data through, try “pulling” some kind of general “result” from the end.
- There *may not* be any seismic traces in the flow!
Seismic traces in IGeoS

- Arbitrary user-defined headers (as in ProMAX)
 - Headers are very extensively used in tool parameterization
- Variable time starts and sampling
- Multicomponent (can also represent data grids for potential-field work or multiple well logs)
- Automatically arranged in multicomponent “ensembles” and “gathers”
 - This makes coding multicomponent applications easy
“Datasets”

- “Dataset” in IGeoS can be anything that can fetch “seismic” traces
 - Formats are resolved individually
- Examples:
 - One or many files (e.g., SAC/*/*.SAC_ASC.gz)
 - File directory trees (as in PASSCAL data)
 - Linear series of files with (optionally) restricted sizes (e.g., file1.sia, file2.sia,...)
 - Database file indexes
 - Trace buffers stored in memory
 - UNIX pipes, Internet connections
 - Combination of other datasets
Tool interactions

- All tools reside in common address space (like in ProMAX but not SAC or SU)
- Any tool can talk to any other
- In most cases, a tool simply passes trace objects to the next tool when they are ready
 - Can pass them backward, discard or create
- No notion of input tools (unlike ProMAX, SAC, or SU)
- Tools can work without any 'traces' at all
- Some tools can provide “functions” to the user
 - Example: tool “refmod” computes IASP91 travel times broadly used in our exercises
Portability

- Originally developed on Vax, Sun (Solaris), SGI (IRIX), and IBM servers
- Now mostly Linux
 - Mandrake, Mandriva, Fedora, Red Hat Enterprise, SUSE, Ubuntu
 - Laptops, workstations, clusters, field boxes
- Darwin (on your iMacs)
- With GNU compilers, portability does not seem to be a problem
 - Its own build system
 - Auto-detection and self-testing
 - Type `sia-update --test .modules` on your iMac
Collaboration

- We all have to develop new code when working on new problems
- IGeoS system has an automatic code updater from multiple repositories
 - Almost like *yum* or *apt-get*
 - Works from source code
 - If someone develops a new tool, it automatically becomes available to everyone
 - Example: IGeoS distribution on http://seisweb.usask.ca is a demo data processor *and* code distributor
 - Type *sia-install - --redo agc* on your iMac
Code update dialog in the GUI

Selecting code repositories

Selecting components to update. These can be modules, libraries, demo examples, etc.
Today's exercises

- **USArray data handling using IGeoS**
 - Reformatting and organizing data
 - Using SQL databases
 - Extracting events, corridors, and other data subsets
 - Gathering, sorting, component rotations
 - Creating maps and record-section plots
 - Using SOD-like capability and web service for “data mining”

- **1D synthetic waveform modeling example**
 - Using parallel computation
You can start the entire processing described here in one command:

```bash
source breq_fast.sh;
source prepare_db.sh;
source events.sh;
source process.sh;
source sod.sh;
source web.sh;
source synthetic.sh;
```

... and go to the library\(^1\) for a few hours.

\(^1\) 'Library' is a bar on the University of Wyoming campus
Example #1: getting data from IRIS

- Look into *breq_fast.sh*:
 - *request.job* creates `breq_fast` requests for emailing to IRIS
 - *rdseed.job* uses *rdseed* to break SEED into many SAC files
 - Use *gzipped ASCII SAC* - it is more compact than binary SAC and platform-independent!
Example #2: populating your database

- Look into `prepare_db.sh`:
 - `make_tables.job` creates all database tables
 - `read_sac.job` reads in gzipped SAC files, collects metadata from them, writes waveforms and database out
 - Note that it won't fail with “Arguments too long” with too many SAC files
 - However, you don't want the output waveform files to get too big – hence save one year at a time
 - `edit_tables.job` and `connect_waveforms.job` perform QC and final tuning of the database
Look into *events.sh*:

- `event-gather.job` extracts time gates for a specified arrival and collects them in a separate file
 - Note the built-in IASP91 travel-time calculator (tool `refmod`) to which you can add your custom “arrivals”, like L_g
 - Note the horizontal component rotation (tool `rotate`)
- `event_gathers.job` queries the db for *all* ~400 events and collects gathers for each of them
 - This takes 4 – 18 hours on our machines
Example #4: working with the database

- Look into `process.sh`:
 - `show_db.job` shows how to make arbitrary db calls and view results
 - `extract-waveforms.job` gets all ~60,000 waveforms in the processing flow, so that you can try doing various things with them
 - `make_corridor.job` creates “station corridors” along the specified paths and saves them in db tables
 - Various `list-* .job`'s show how to list various items by creating empty data traces and using the normal trace-handling machinery
Look into `process.sh`:

- An easy general approach is to generate a synthetic trace for each item you want to plot and make it print headers in a file
 - This is not the only way; there also is a direct GMT interface (modules `image`, `gmt`, `graphic`)
- Several `map-*.job`'s show how to obtain various subsets from the database and plot their coordinates
- `map-event.job` shows how to plot stations that have recorded a selected arrival from any event
Example #6: plotting time sections

- Look again into `process.sh`:
 - An easy general approach is to generate a synthetic trace for each item you want to plot and make it print headers in a file.
 - Several `map-* .job`'s show how to obtain various subsets from the db and plot their coordinates.
 - `map-event.job` shows how to plot stations that have recorded a selected arrival from any event.
Can we solve the problem of data access from a remote data source \textit{in principle} (so that no other mechanism would need to be developed)?
Can we solve the problem of data access from a remote data source *in principle* (so that no other mechanism would need to be developed)?

Yes, if we learn to do two things:

- Deploy our own processing onto the server
- Retrieve data files/streams from it
Can we solve the problem of data access from a remote data source *in principle* (so that no other mechanism would need to be developed)?

Yes, if we learn to do two things:

- Deploy our own processing onto the server
- Retrieve data files/streams from it

Then:

- User can entirely control the result. Pre-processing (e.g., QC, filtering, rotation, RF deconvolution, can be done on the server)
- Data center staff involvement is minimized
- Internet traffic is minimized
Example #7: SOD-like data access

- Look into *sod.sh*:
 - *sod-list.job* generates SQL queries based on user's specifications of event and station ranges, distances and azimuths
 - It generates an “anchor trace” for each available time window and lists its attributes
 - Saves the results in text files
 - It again creates maps of events, stations, and raypaths – just in case you may need them
 - *sod.job* also actually retrieves the requested waveforms and saves them in files
Example #8: web service

Problem:

- I have an exactly the same package plus another dataset named USArray installed on seisweb.usask.ca
- We now want to execute some processing with this dataset and obtain some data from it
 - We will implement this via a web (HTTP) connection
- Think of this as doing processing on a data center's computer
- Look into web.sh
Example #8: web service (cont)

- Look into `web.sh`:
 - several `web-info-*.job` obtain general settings of the server
 - Names, directories available
 - Usage examples for various tools
 - `web-flow-usage.job` gives a usage example of one of the installed jobs
 - `web-flow-exec.job` executes a remote job with your parameters and retrieves results (files)
 - `web-flow-send.job` send `your job` to the server and executes it there
 - Think of this as the “SOD” job above
Example #9: Modeling

- Modeling is another type of “processing” which may require special resources
 - Through the web-service capability, you could use someone else's super-computer
- Look into `synthetic.sh`:
 - `reflect-synthetic.job` performs 1D “reflectivity” modeling of 3-component seismograms in a layered Earth model
Conclusions

- Process-oriented approach allows solving most earthquake data-handling problems
 - Uniform approach to data access, processing, modeling, and inversion
 - Fully reproducible, self-documented processing
 - USArray data handling tasks are feasible on common hardware
- A large software system suitable for passive and active-source seismology is available
- With web collaboration, sharing data and computer resources is practical
Homework for tomorrow

- Assume that the dataset shown in class contains all of the available data for the ~400 stations in western U.S. (not just selected event windows)

- Propose a sequence of operations needed to construct the “noise” cross-correlation for one selected station with all others
 - Sketch a pseudo-code (‘generate anchor trace’, 'ask the database for time windows','for each database response, do...', etc.)
 - Note that tool sgstack (“shot-gather stack”) discussed in event-gather.job might be helpful here
 - Think of optimizing the process by selecting only a range of group velocities between the stations
 - Think of excluding some strong known arrivals (e.g, P, S)
Appendix: topics not covered today
Web service

- This is how this web service looks in the GUI
Graphical User Interface
Interactive trace display
3D reflection visualization (early attempt)
2-D Ray tracing and gravity modeling
Interactive Receiver Function modeling and inversion (work in progress)
Real-time data display (event in Saskatchewan)
Real-time display (early attempt)
Animated 3D display of 75000 earthquake hypocenters. Georeference data *directly* from GMT.
Web processing interface