Autonomous Polar Observing Systems:

Mike Rose & Many co workers at BAS.

Developments at British Antarctic Survey

Mike Rose 2010 BAS

m.rose@bas.ac.uk

UAS for Boundary layer studies

philip.s.anderson@bas.ac.uk

-

A A DEASY SELECT

N.C. Male

W.C.

Bird Loggers: Position of bird and immersion (feeding) information relayed via Argos.

Jim.Fox@bas.ac.uk Richard.Phillips@bas.ac.uk

SNOW ALBEDO >0.9

Roughness length (z₀) implications

LPM Power system

NATURAL ENVIRONMENT RESEARCH COUNCIL

Long Term Battery Tests

Expected duration for 100Ahr Lead Acid AGM Cell at -40°C

Discharge current	Rating	Expected Duration For 100Ahr
10mA	82%	341 days
20mA	75%	156 days
40mA	67%	70 days
80mA	50%	26 days

m.rose@bas.ac.uk

BAS LPMs

POWER SAVING

TURN ON - Make a MEASUREMENT - TURN OFF

Time spent on/off is defined mainly by:

- Sampling interval
- Anti- alias filter

POWER SAVING

TURN ON - Make a MEASUREMENT - TURN OFF

Average noise power 10^{3} fT/ \sqrt{Hz} @ 1s Peak – allow 10X more. Sensor is 10^{4} fT/ \sqrt{Hz} @ 1s Allow 10^{5} fT/ \sqrt{Hz} @ 1s With 100Hz LP this is 1nT

303

Figure 12.3.1 Variation of the Arrival Heights ELF/VLF noise amplitudes for the months of January 1986, 1987, and 1988 and July 1986 and 1987. Overall average amplitudes for each of the 16 narrowband frequencies are shown. For frequencies less than 1 kHz the amplitudes show little variation over the 2-year interval. (From Fraser-Smith, A. C. et al. *Environmental Space Electromagnetics,* H. Kikuchi, Ed., Springer-Verlag, Tokyo, 1991, 191. With permission.)

1s H Component. High variance data

Red = LPM, Green = AGO

Ч

Red & Blue = LPM, Green & Magenta = AGO

Period (s)

ower

LPMNET

- International Low Power magnetometer network operating on Antarctic Plateau.
- Data freely available at: dabs.nerc-bas.ac.uk/lpm from 2001 to date.
- 20 in total: 11 BAS systems, 4 Operated by Japan, 4 Operated by China and 1 by Italy.
- Data validation, system performance, processing code and other technical information at: www.antarctica.ac.uk
- Commercially available from www.extreme-instrumentation.com

rsla@bas.ac.uk

(small) variable speed wind generators

m.rose@bas.ac.uk

Wind Generators fail in Antarctica

Antarctica

- Wind regime dominated by storms and katabatics.
- Many sites with average wind speeds of 10ms⁻¹ or greater.
- Calms are rare low windspeed and startup are unimportant.
- Sites may be remote and rarely visited >1year.
- Cold many implications, but especially for chemical and mechanical systems.

Survivability and MTBF is most important.

'Controllers' do more than 1 job

- $\boldsymbol{\cdot}$ Govern the operating conditions of the turbine
- Protect down stream systems from the energy available in the wind
- Report back status, knowledge etc
- Regulate the batteries arghh
- Megalomaniacs assume they are THE controller.

Basic - but important

 $E=\frac{1}{2}mv^{2}$ m= $\rho\pi r^{2}v$ (for a tube of air in 1s) (and remembering E=PxT)

Therefore
$$P = \frac{1}{2} \rho \pi r^2 V^3$$

Tip Speed Ratio - λ - tip speed /wind speed

Control method - PWM shunting.

Control method - PWM shunting.

- High frequency (4.5KHz) energy loss
- Removes energy from:
 - Stored in inductance of windings.
 - \cdot That being supplied by the wind.
 - Momentum of the blades etc. (this is the big one!)

Modular system considerations

- Multiple manufacturers redundancy
- Scaleable more generators, more batteries
- Standard controllers in system one per generator
- Maintenance log history of performance

BAS Wind Generator Controller

Regulates on:

- Output voltage
- Output Current

Shuts down on:

- Input I (ave and peak)
- Hardwired input (OTSW)
- RS485 command

Transmits:

 Input I&V, Output I&V, PWM, RPM, Temp, etc

Turbine survivability

		2008	2009	2010	Notes
SG1 913	Generator	✓			Only 1 year of operation
	Controller	✓			Only 1 year of operation
SG1 Ampair	Generator	×			Only 1 year of operation
	Controller	×			Only 1 year of operation
SG1 Windside	Generator	✓			Only 1 year of operation
	Controller	✓			Only 1 year of operation
SG2 913	Generator	✓			Only 1 year of operation
	Controller	✓			Only 1 year of operation
SG2 Windside	Generator	✓			Only 1 year of operation
	Controller	×			Only 1 year of operation
A77 913	Generator	✓	✓	✓	
	Controller	✓	✓	✓	
A77 Ampair	Generator	×	✓	✓	New turbine in 08/09 season.
	Controller	✓	✓	✓	
A77 Windside	Generator	✓	✓	?	
	Controller	✓	✓	?	
A80 913	Generator	✓	\checkmark		System removed in 09/10 season
	Controller	✓	✓		System removed in 09/10 season
A80 Ampair	Generator	✓	✓		System removed in 09/10 season
	Controller	✓	✓		System removed in 09/10 season
A80 Windside	Generator	✓	✓		System removed in 09/10 season
	Controller	\checkmark	\checkmark		System removed in 09/10 season

NATURAL ENVIRONMENT RESEARCH COUNCIL

c.n.mitchell@bath.ac.uk

10

Site G 2008 Tropospheric Ozone Data

a.jones@bas.ac.uk

Monitoring Program: GPS network

- Survey-quality GPS stations have been installed around Halley to watch for a natural calving event.
- Each station collects two hours of GPS raw data daily and transmits it back to Halley via radio modem.
- Our network has shown that the Brunt Ice shelf is currently stable.

SIBLEX Sea Ice Boundary Layer Experiment

Logging of

- •Water current
- Upward looking sonar
- •Depth
- •Atmospheric pressure
- •Battery powered •Solar recharging
- Iridium SBD
- •GPS
- •Persistor 1 raw logger
- •Persistor 2 data processing and comms
- Designed for Peninsula iceshelf conditionsIP67 rated logger and battery boxes

SCOTTISH ASSOCIATION for MARINE SCIENCE

Powering sea-ice equipment via the Seebeck effect

- Problem powering sea-ice instruments during polar winters;
 - No solar power, wind generators unreliable.
- Thermoelectric energy harvesting;
 - Seebeck effect: temperature \rightarrow electricity.
 - Exploit thermal gradient across sea-ice.
- Prototype device;
 - 2m long, 6" dia, rugged construction,
 - Heat pipe (thermal superconductor),
 - No moving parts (reliability),
 - − Output: \approx 5V, 300mW (Δ T=30°C).

Scottish Marine Institute, Oban, Argyll PA37 1QA Scotland, UK

Closing remarks

- Modular systems allows reuse at design and in the field.
- Simplicity in the field, eases maintenance, lowers logistic cost.
- Clustering instruments lowers logistics cost.
- Suggestion: Multiple networks share maintenance by location rather than equipment originator.
- Much BAS kit available from www.extreme-instrumentation.com primarily as means to support collaborations.
- Knowledge exchange collaborations, job swaps, sabbaticals, etc.
- \cdot EGU usually has a session on polar instrumentation.

