The Vision of a Polar Observing System - Seismology

Andy Nyblade, Dept. of Geosciences, Penn State University

Autonomous Polar Observing Systems Workshop, Sept 30, 2010

Outline

 Why do we need a polar obs. system for seismology? – The pressing science

• Steps already taken – progress report

A larger vision – what is needed to achieve the science goals

Image from IRIS E&O program

Science Questions – Antarctica (relevant to Greenland also)

What is the neotectonic framework of the Antarctic plate?

- Microplates in
- W. Antarctica?
- Are there bits of
- the E. Antarctic

craton in W. Antarctica?

Modified from Anderson (1999)

Two views of the Geology of East Antarctica

Archean Craton (Tingley, 1991)

More Recent Orogenic Belts (Fitzsimons, 2003)

Science Questions

What is the structure and origin of major tectonic features?

- the Transantarctic
- **Mountains**
- West Antarctic Rift
- System
- East Antarctic
- Craton basins, mtns, rifts

Crustal Structure from S-wave Receiver Functions

Hansen et al., EPSL (*In Review*)

Hansen et al., 2009

Mantle Structure from P wave Tomography

100 KM

77 Stations are used from TAMSEIS, GAMSEIS, POLENET, & GSN Seismic Arrays

752 Events with 8,523 Ray Paths are Inverted for P Velocity Perturbations

A. Lloyd, Work in Progress

Science Questions

What is the thermal structure of the crust and mantle?

- Implications for
- ice sheet models

An African Example- Heat Flow across East Africa

Science Questions

Glacial Seismology

- What are the response times and spatial gradients in ice sheet movements?
- What is under the ice?

Combined GPS & Seismic

Science Questions

Ray Paths

PKP (ab-df) anomaly = 3.2 to 6.1 s

Inner Core Anisotropy

Broadband seismic stations in Antarctica and initial temporary broadband networks

ANUBIS & TAMSEIS Deployments

D. Wiens, A. Nyblade & S. Anandakrishnan: S. Anandakrishnan: 1999-2001 2001-2003 75°S 80°S 85°S 90°W EWM мтм 140 E 120 E CWA Dome-C 100E 8n BYRD **East Antarctica** ISDE 10 Vostok SDM MBL ASYO PMSA ▲MAW 12000 85 100 120 140 760 ·CASY VND4 700 meters TNV DRV 1.05

ANUBIS & TAMSEIS Deployments

28 stations are on the ice plateau

- Installed and serviced by twin otter
- 10 stations serviced from a field camp
- Established by C-130

Ice installations:

- sensor and DAS are in a heated box
- all stations have 6 30 W panels
- about 20 stations have windmills
- sensor placed on wood block about 1 m below surface
- generally operate from Nov-March

Antarctic Seismology - where do we go from here? Structure and Evolution of the Antarctic Plate (SEAP) Workshop

March, 2003 in Boulder CO Organized by Mike Ritzwoller ~ 80 participants

Recommendations:

International Program
Establishment of permanent seismic stations on the interior
Systematic coverage of Antarctica with a moving array

•Focused experiments in key regions

Proposed Antarctic Backbone stations and Moving Array (Pinwheel)

NSF investments in polar seismology

- MRI I to develop the next generation of power and communication system for seismic and GPS stations – Jan 2006
- MRI II to purchase cold-equipped seismic sensors and data loggers Jan 2007
- Additional investments as supplemental awards – equipment, personnel
- MRI GLISN

Seismic Stations

Rock Deployment: Backbone Station

Ice Deployment: Transect Station

Remaining AGAP Stations

GLISN – Greenland Ice Sheet Monitoring Network

The GLISN project will establish a real-time sensor array of 25 stations to enhance and upgrade the performance of the scarce existing Greenland seismic infrastructure for detecting, locating, and characterizing glacial earthquakes and other cryo-seismic phenomena, and contribute to our understanding of Ice Sheet dynamics. [http://glisn.info/]

Polar Seismology - where do we go from here?

Proposed Antarctic Backbone stations and Moving Array (Pinwheel)

Recommendations:

- International Program
- •Establishment of many permanent seismic stations
 - •Polenet & AGAP&GLISN
 - •Long-term O&M?
- •Focused experiments in key regions
- dedicated equipment pool
 - a) broadband seismometers
 - b) active source systems

Figure from Brian Kennett & Anya Reading, ANU