MEMS Applications in Seismology

Nov 11, 2009
Seismic Instrumentation Technology Symposium

B. John Merchant
Technical Staff
Sandia National Laboratories
Outline

• Overview of MEMS Technology
• MEMS Accelerometers
• Seismic Requirements
• Commercial Availability
• Noise & Detection Theory
• Current R & D Efforts
• Outlook
What are MEMS?

Micro-Electro-Mechanical Systems (MEMS)

Features range from 1 to 100 microns.

Similar fabrication techniques as Integrated Circuits (IC). However, MEMS fabrication is a trickier process due to the incorporation of mechanical features.

Distinguished from traditional mechanical systems more by their materials and methods of fabrication than by feature size.

## What are MEMS?

<table>
<thead>
<tr>
<th>Materials</th>
<th>Fabrication</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Silicon</strong>&lt;br&gt;Silicon makes a nearly perfect spring with very stable material properties.</td>
<td><strong>Deposition</strong>&lt;br&gt;Electroplating&lt;br&gt;Evaporation&lt;br&gt;Sputtering</td>
<td>Automotive air bags&lt;br&gt;Inkjet printers&lt;br&gt;DLP projectors&lt;br&gt;Consumer Electronics (Cell phone, Game Controllers, etc)&lt;br&gt;Sensors (pressure, motion, RF, magnetic, etc)</td>
</tr>
<tr>
<td><strong>Polymers</strong></td>
<td><strong>Lithography</strong>&lt;br&gt;Photo, Electronic, Ion, X-ray</td>
<td></td>
</tr>
<tr>
<td><strong>Metals</strong>&lt;br&gt;gold, nickel, chromium, titanium, tungsten, platinum, silver.</td>
<td><strong>Etching</strong>&lt;br&gt;Wet Etching: Bathed in a chemical solvent&lt;br&gt;Dry Etching: Vapor/Plasma</td>
<td></td>
</tr>
</tbody>
</table>
Three Dominant MEMS Microfabrication Technologies

**Surface Micromachining**
- Structures formed by deposition and etching of sacrificial and structural thin films

**Bulk Micromachining**
- Structures formed by wet and/or dry etching of silicon substrate

**LIGA**
- Structures formed by mold fabrication, followed by injection molding

*Wet Etch Patterns*
- Groove
- Nozzle
- Membrane
- Silicon Substrate

*Dry Etch Patterns*
- Channels
- Holes
- Silicon Substrate

*Poly Si*
- Silicon Substrate

*Silicon Substrate*

*Courtesy of SNL MEMS Technology short course*
MEMS History

- 1970’s - IBM develops a micro-machined pressure sensor used in blood pressure cuffs
- 1986 – LIGA process for X-ray lithography enable more refined structures
- 1989 – Lateral Comb drive at Sandia National Laboratories
- 1991 – Analog Devices develops the first commercial MEMS accelerometer for air bag deployment (ADXL50)
- 1994 – Deep Reactive-Ion Etching (DRIE) process developed by Bosch.
- 1979 - HP develops inkjet cartridges using micro-machined nozzles
- 1988 – first rotary electro-static drive motors developed at UC Berkley
- 1994 – Decreasing Costs
- 1995 – Increasing Commercialization
- 2000
- 2005
- 2009
MEMS Commercial Applications

Digital Mirror Device
Texas Instruments

Ink Jet Cartridge
Hewlett Packard

Micromirror switch
Lucent Technologies

Accelerometer
Analog Devices

Pressure Sensor
Bosch MEMS

Courtesy of SNL MEMS Technology short course
1991 – Air Bag Sensor Analog Devices (ADXL50) +/- 50 g Peak 6.6 mg/√Hz Noise

2002 – Applied MEMS (now Colibrys) releases low-noise Si-Flex Accelerometer: +/- 3 g Peak 300 ng/√Hz Noise

2004 – Colibrys VectorSeis Digital 3 Channel Accelerometer 2 – 1000 Hz +/- 0.335 g Peak ~50 ng/√Hz Noise

2005 – Sercel 428XL-DSU3 2 – 800 Hz +/- 0.5 g Peak ~40 ng/√Hz Noise

2006 – Nintendo Wii Controller (Analog Devices ADXL330). +/- 3 g Peak 350 ug/√Hz Noise

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009

Improvements in performance
What makes a MEMS Seismometer

A MEMS Accelerometer with:

- Low noise floor (ng’s/√Hz)
- ~1 g upper range
- High sensitivity

Modeled as a spring-mass system
Proof mass measured in milli-grams
Bandwidth below the springs resonant mode
(noise and response flat to acceleration)
Seismology Requirements

- **Noise floor**  
  (relative to the LNM)
- **Peak acceleration**  
  (Strong vs weak motion)
- **Sensitivity**
- **Linear dynamic range**
- **Bandwidth**  
  (short-period, long-period, broadband)

Requirements are ultimately application dependent
Many of the strong motion requirements may be met by today’s MEMS Accelerometers:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>&lt; 1 ug/\sqrt{Hz}</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>&gt; 1-2 Hz</td>
</tr>
<tr>
<td>Peak Acceleration</td>
<td>1-2 g’s</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>~100 dB</td>
</tr>
</tbody>
</table>
Weak Motion Requirements

Weak motion requirements are more demanding:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>&lt; 1 ng/√Hz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>SP: 0.1 Hz to 10’s Hz</td>
</tr>
<tr>
<td></td>
<td>LP: &lt; 0.01 Hz to 1’s Hz</td>
</tr>
<tr>
<td></td>
<td>BB: 0.01 Hz to 10’s Hz</td>
</tr>
<tr>
<td>Peak Acceleration</td>
<td>&lt; 0.25 g</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>&gt;120 dB</td>
</tr>
</tbody>
</table>

There are no MEMS accelerometers available today that meet the weak motion requirements.
Commercially Availability

There are many manufacturer’s of MEMS Accelerometers.

Most are targeted towards consumer, automotive, and industrial applications.

Only a few approach the noise levels necessary for strong-motion seismic applications.

Manufacturers
- Analog Devices
- Bosch-Sensortec
- Colibrys
- Endevco
- Freescale
- GeoSIG
- Kinematics
- Kionix
- MEMSIC
- PCB
- Reftek
- Silicon Designs
- STMicroelectronics
- Summit Instruments
- Sercel
- Wilcoxon

*Noise Floor < 1 ug/√Hz
Colibrys

Formerly Applied MEMS, I/O.
Oil & Gas Exploration

Produces VectorSeis which is sold through ION (www.iongeo.com)

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Colibrys</th>
<th>Colibrys</th>
<th>Colibrys</th>
<th>Colibrys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>SF 1500</td>
<td>SF 2005</td>
<td>SF3000</td>
<td>Digital-3*</td>
</tr>
<tr>
<td>Technology</td>
<td>Capacitive</td>
<td>Capacitive</td>
<td>Capacitive</td>
<td>Capacitive</td>
</tr>
<tr>
<td></td>
<td>Force Feedback</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Analog</td>
<td>Analog</td>
<td>Analog</td>
<td>Digital</td>
</tr>
<tr>
<td>Format</td>
<td>Chip</td>
<td>Chip</td>
<td>Module</td>
<td>Module</td>
</tr>
<tr>
<td>Axis</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Power</td>
<td>100 mW</td>
<td>140 mW</td>
<td>200 mW</td>
<td>780 mW</td>
</tr>
<tr>
<td>Acceleration</td>
<td>+/- 3 g</td>
<td>+/- 4 g</td>
<td>+/- 3 g</td>
<td>+/- 0.2 g</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>0 – 1500 Hz</td>
<td>0 – 1000 Hz</td>
<td>0 – 1000 Hz</td>
<td>0 – 1000 Hz</td>
</tr>
<tr>
<td>Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1.2 V/g</td>
<td>500 mV/g</td>
<td>1.2 V/g</td>
<td>58 ng/bit</td>
</tr>
<tr>
<td>Self Noise</td>
<td>300 – 500 ng/√Hz</td>
<td>800 ng/√Hz</td>
<td>300 - 500 ng/√Hz</td>
<td>100 ng/√Hz</td>
</tr>
<tr>
<td>Weight</td>
<td>Not Specified</td>
<td>Not Specified</td>
<td>Not Specified</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Size</td>
<td>24.4 x 24.4 x 16.6 mm</td>
<td>24.4 x 24.4 x 15 mm</td>
<td>80 x 80 x 57 mm</td>
<td>40 x 40 x 127 mm</td>
</tr>
<tr>
<td>Shock Range</td>
<td>1500 g</td>
<td>1500 g</td>
<td>1000 g</td>
<td>1500 g</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 to 125 °C</td>
<td>-40 to 85 °C</td>
<td>-40 to 85 °C</td>
<td>-40 to 85 °C</td>
</tr>
</tbody>
</table>

*discontinued
Endevco, PCB, Wilcoxon

Not strictly MEMS, but they are small and relatively low-noise.

All three companies make fairly similar Piezoelectric accelerometers

Industrial and Structural applications
Kinemetrics

Strong motion, seismic measurement

Force Balance Accelerometer

Available in single and three axis configurations

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Kinemetrics</th>
<th>Kinemetrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>EpiSensor ES-T</td>
<td>EpiSensor ES-U2</td>
</tr>
<tr>
<td>Technology</td>
<td>Capacitive MEMS</td>
<td>Capacitive MEMS</td>
</tr>
<tr>
<td>Output</td>
<td>Analog</td>
<td>Analog</td>
</tr>
<tr>
<td>Format</td>
<td>Module</td>
<td>Module</td>
</tr>
<tr>
<td>Axis</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Power</td>
<td>144 mW</td>
<td>100 mW</td>
</tr>
<tr>
<td>Acceleration Range</td>
<td>+/- 0.25 g</td>
<td>+/- 0.25 g</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>0 – 200 Hz</td>
<td>0 – 200 Hz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>10 V/g</td>
<td>10 V/g</td>
</tr>
<tr>
<td>Self Noise</td>
<td>60 ng/√Hz</td>
<td>60 ng/√Hz</td>
</tr>
<tr>
<td>Weight</td>
<td>Not Specified</td>
<td>350 grams</td>
</tr>
<tr>
<td>Size</td>
<td>133 x 133 x 62 mm</td>
<td>55 x 65 x 97mm</td>
</tr>
<tr>
<td>Shock Range</td>
<td>Not Specified</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Temperature</td>
<td>-20 to 70 °C</td>
<td>-20 to 70 °C</td>
</tr>
</tbody>
</table>
Reftek

Strong motion measurement for seismic, structural, industrial monitoring

Available in single, three axis, and borehole configurations

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Reftek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>131A*</td>
</tr>
<tr>
<td>Technology</td>
<td>Capacitive MEMS</td>
</tr>
<tr>
<td>Output</td>
<td>Analog</td>
</tr>
<tr>
<td>Format</td>
<td>Module</td>
</tr>
<tr>
<td>Axis</td>
<td>3</td>
</tr>
<tr>
<td>Power</td>
<td>600 mW</td>
</tr>
<tr>
<td>Acceleration Range</td>
<td>+/- 3.5 g</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>0 – 400 Hz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>2 V/g</td>
</tr>
<tr>
<td>Self Noise</td>
<td>200 ng/√Hz</td>
</tr>
<tr>
<td>Weight</td>
<td>1000 grams</td>
</tr>
<tr>
<td>Size</td>
<td>104 x 101 x 101 mm</td>
</tr>
<tr>
<td>Shock Tolerance</td>
<td>500 g</td>
</tr>
<tr>
<td>Temperature</td>
<td>-20 to 60 ºC</td>
</tr>
</tbody>
</table>

* uses Colibrys Accelerometers
Sercel

Used in tomography studies for Oil & Gas Exploration
Sold as complete turn-key systems and not available for individual sales

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Sercel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>DSU3-428</td>
</tr>
<tr>
<td>Technology</td>
<td>Capacitive MEMS</td>
</tr>
<tr>
<td>Output</td>
<td>Digital</td>
</tr>
<tr>
<td>Format</td>
<td>Module</td>
</tr>
<tr>
<td>Axis</td>
<td>3</td>
</tr>
<tr>
<td>Power</td>
<td>265 mW</td>
</tr>
<tr>
<td>Acceleration</td>
<td>+/- 0.5 g</td>
</tr>
<tr>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>0 – 800 Hz</td>
</tr>
<tr>
<td>Response</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Self Noise</td>
<td>40 ng/√Hz</td>
</tr>
<tr>
<td>Weight</td>
<td>430 grams</td>
</tr>
<tr>
<td>Size</td>
<td>159.2 x 70 x 194 mm</td>
</tr>
<tr>
<td>Shock Range</td>
<td>Not Specified</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40 to 70 ºC</td>
</tr>
</tbody>
</table>
MEMS accelerometers

Advantages

• Small
• Can be low power, for less sensitive sensors.
• High frequency bandwidth (~ 1 kHz)

Disadvantages

• Active device, requires power
• Poor noise and response at low frequencies (< 1 Hz), largely due to small mass, 1/f noise, or feedback control corner.
• Noise floor flat to acceleration, exacerbates noise issues at low frequency (< 1 Hz)
Theoretical Noise

Two main sources of noise:

- **Thermo-mechanical**
  - Brownian motion
  - Spring imperfections

- **Electronic**
  - Electronics
  - Detection of mass position
  - Noise characteristics unique to detection technique

### Thermo-mechanical noise for a cantilevered spring

\[
a_n = \sqrt{\frac{4k_B T \omega_0}{Q \cdot m}} \cdot \frac{1}{\sqrt{Hz}}
\]

<table>
<thead>
<tr>
<th>Boltzmann’s Constant</th>
<th>( k_B = 1.38 \times 10^{-23} ) J/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>( T = 300 ) K</td>
</tr>
<tr>
<td>Resonant Frequency</td>
<td>( w_0 = 314.16 ) rad/s (50Hz)</td>
</tr>
<tr>
<td>Quality Factor</td>
<td>( Q = 1000 )</td>
</tr>
<tr>
<td>Proof Mass</td>
<td>( m = 1 ) gram (10^-3 kg)</td>
</tr>
</tbody>
</table>

\[
a_n = 2.3 \times 10^{-9} \text{ m s}^{-2}/\sqrt{\text{Hz}}
\]

\[
= 0.2 \text{ ng} / \sqrt{\text{Hz}}
\]

<table>
<thead>
<tr>
<th>Traditional Seismometer</th>
<th>MEMS Accelerometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large mass (100’s of grams)</td>
<td>Small mass (milligrams)</td>
</tr>
<tr>
<td>Thermo-mechanical noise is small</td>
<td>Thermo-mechanical noise dominates</td>
</tr>
<tr>
<td>Electronic noise dominates</td>
<td>Same electronic noise issue as traditional</td>
</tr>
</tbody>
</table>
Detection of mass position

Variety of ways to determine mass-position
  – Piezoelectric / Piezoresistive
  – Capacitive
  – Inductive
  – Magnetic
  – Fluidic
  – Optical (diffraction, fabry-perot, michelson)
Capacitive Detection

The most common method of mass position detection for current MEMS accelerometers is capacitive.

Capacitance is a weak sensing mechanism and force (for feedback control) which necessitates small masses (milligrams) and small distances (microns).

Feedback control employed for quietest solutions. Differential sampling for noise cancelation.

Colibrys bulk-micromachined proof mass sandwiched between differential capacitive plates

Silicon Designs capacitive plate with a pedestal and torsion bar.
R&D Challenges

• Large proof mass and weak springs required. This makes for a delicate instrument.
• Capacitance less useful as a detection and feedback mechanism for larger masses.
• Feedback control required to achieve desired dynamic range and sensitivity.
• R&D requires access to expensive MEMS fabrication facility
• 1/f electronic noise could limit low-frequency
DOE Funded R&D Projects

• Several posters on display
• Additional details and proceedings available at http://www.monitoringresearchreview.com/

• Characteristics:
  – Significantly larger proof mass (0.25 – 2 grams)
  – Non-capacitive mass position sensing (inductive, optical, fluidic)
  – Feedback control
DOE Funded R&D Projects

**Kinematics / Imperial College**
- Inductive coil with force feedback
- Proof mass of 0.245 grams
- 0.1 - 40 Hz bandwidth, resonant mode at 11.5 Hz
- Demonstrated noise performance of 2-3 ng/√Hz over 0.04 – 0.1 Hz, higher noise at frequencies > 0.1 Hz

**Symphony Acoustics**
- Fabry-Perot optical cavity
- Proof mass of 1 gram
- 0.1 - 100Hz bandwidth
- Demonstrated noise performance of 10 ng/√Hz
- Theoretical noise performance of 0.5 ng/√Hz
DOE Funded R&D Projects

Sandia National Laboratories

• Large proof mass (1 gram, tungsten)
• Meso-scale proof mass with MEMS diffraction grating and springs.
• Optical diffraction grating
• Theoretical thermo-mechanical noise 0.2 ng/√Hz over 0.1 to 40 Hz

Silicon Audio

• Large proof mass (2 gram)
• Meso-scale construction with MEMS diffraction grating
• Optical diffraction grating
• 0.1 to 100 Hz target bandwidth
• Theoretical thermo-mechanical noise 0.5 ng/√Hz over 1 to 100 Hz
**DOE Funded R&D Projects**

**PMD Scientific, Inc.**
- Electrochemical fluid passing through a membrane
- Theoretical noise $0.5 \, \text{ng/} \sqrt{\text{Hz}}$ over $0.02$ to $16 \, \text{Hz}$

**Michigan Aerospace Corp.**
- Whispering Gallery Seismometer
- Optical coupling between a strained dielectric microsphere and an optical fiber
- Theoretical noise of $10 \, \text{ng/} \sqrt{\text{Hz}}$
Over the next 5 years, there is a strong potential for at least one of the DOE R&D MEMS Seismometer projects to reach the point of commercialization.

This would mean a MEMS Accelerometer with:

- a noise floor under the < LNM (~ 0.4 ng/√Hz)
- Bandwidth between 0.1 and 100 Hz,
- > 120 dB of dynamic range
- small ( < 1 inch^3).
- Low power (10’s mW)
Enabling Applications

• Flexible R&D deployments
• Why simply connect a miniaturized transducer onto a traditional seismic system?
• Will require highly integrated packages:
  – Digitizer
  – Microcontroller
  – GPS
  – Flash storage
  – Communications
  – Battery

[Diagram showing interconnections between Power Source, Battery Backup, Antenna, Radio/Ethernet, Compass, GPS, Microprocessor, Storage, 3-axis Accelerometer, orientation, location, time, waveform time series, data retrieval, algorithms, communications, waveforms, parameters, detection templates]
10 year outlook

- MEMS Accelerometers have only been commercially available for ~18 years.
- Where were things 10 years ago?

- Further expansion into long period (~ 0.01 Hz)
- Small, highly integrated seismic systems
Questions?