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Strain 
  
1.0 Strain 
 
Consider a square of material in a 2-D substance that is being acted on by surface and body 
forces. 
 

 
 
Stress on the square can have three effects: 

1) Translation 

 
2) Rotation 

 
3) Deformation (Strain) 

 
 
 
 
rigid body 
motions 
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If you think about it, there are 3 ways the square can be strained: 

1) Change its size in the x1 direction. 

 
 
2) Change its size in the x2 direction 

 
 
3) Shear it. 

 
Like with stress, we have normal strains (1 and 2 above), and shear strains (3), and can 
represent strain as a tensor.    Let’s examine how to quantify strain, which is formally defined 
as the relative change in particle distances in an infinitesimal body. 
 
First note that we will talk about things in terms of a 1, 2, 3 coordinate system (i.e. v1 is the 
x-component of vector v, v2 is the y-component of vector v, and v3 is the z-component of 
vector v).   Vector x is thus an arbitrary vector in 3 dimensions, and has nothing to do with a 
particular axis.    If you find it frustrating, this is done because it makes it easier to use 
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Einstein Summation Notation.   Also note that you will see this sort of notation used in other 
books, so it is useful to get a handle on this. 
 
Imagine a solid body where displacements u(x) have been induced by stress.    For any point, 
x = (x1, x2), u(x) will describe how far that point is moved by the deformation.    

 
 
So, imagine our point x is at x = (3,3).    If deformation occurs, and u(x) = (1,1), then the new 
location of the point is at x’ = x + u(x) = (4,4).   Basically, this u(x)  moves everything up 
and to the right by a distance of sqrt(2).     In this case, a square before the deformation 
would remain a square after the deformation, and have the same volume. 
 
Now, imagine a u(x)  that was slightly more complicated, say u(x)  = (x2,0).    In this case, a 
point at x = (0,0) would remain at 0,0.   But for a point at x = (0,1), u(x)  would be (1,0).   
Hence, the new location of the point would be x’ = (1, 1).   So, a square would be sheared, 
but keep the same volume, as you can see below. 

 
 
We can imagine more complicated versions of u(x).   For instance, u(x)  = (x1

2, x2
2).    If 

square 1 has vertices at (0,0), (0,1), (1,1), and (1,0), it would be transformed to (0,0), 
(0,2),(2,2), and (2,0).   Square 2 at (2,2),(2,3),(3,3), and (3,2) would be transformed to 
(6,6),(6,12),(12,12), and (12,6).    Note that square 1 has its volume change by a factor of 4, 
but square 2 has a volume change of a factor of 36.    So the position of the square affects the 
volume change.   Of course deformation in the x1 direction could also be a function of 
position in the x2 direction.   So u(x)  could be something like u(x)  = (x2 x1

2, x1+x2).    
 
Our goal is to come up with a tensor that defines the deformation of an infinitesimal cube 
located at a point x.    It should be able to represent shear (as in the figure above) and volume 
change.   Since the effect of u(x)  on a vertex of a cube is dependent upon position, we will 
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have to consider how the effect of u changes with position.     As soon as you hear the words, 
function, change, and position, you should be thinking: derivative, since that is what a 
derivative measures: the change in a function as position (or another variable) changes. 
 
Since we are interested in strain in an elastic body, we can assume u(x) varies smoothly from 
point to point.   Mathematically, this means that if u(x) represents the deformation at point x, 
we can come up with a function u(x)  + δu(x)  that is the deformation at nearby point x + δx.   
This is represented graphically by the figure below, from the Stein and Wysession seismology 
book. 
 
We are getting somewhere, believe it or not, because now we have a measure, δu, that 
describes the displacement of any two nearby points due to deformation.    If we can get a 
handle on how nearby points (like the vertices of a cube) move, we have a way to fully 
represent deformation.    And since strain is defined as the relative movement of nearby 
particles in a medium, this will give us strain. 
 

 
 
What we are saying here is that the initially the two particles are separated by vector xδ  ; 
after deformation, the new separation is uδ  .  We assume that there is a function that 
describes how uδ   varies with x

 .    By the Taylor series approximation1 (i.e. this only works 
for small values of xδ  ),  
 





δ

δ δ δ
+

∂
+ ≈ + ∇ + = + = +

∂




     
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( )
( ) ( ) higher order terms ( ) ( )i

i i i j i i
jrotation straindisplacement ignored ce x is small

u x
u x x u x u u x x u x u

x  
So, 

 

 

                                                 
1 We only need the first term of the Taylor Series because we are considering small displacements.   There is a 
formalism for dealing with large displacements, such as might be found in ductile flow, but we won’t discuss 
these here and will consider only elastic deformation. 
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I will digress for a bit here, and you can ignore this box if desired.  In the Taylor Series above, I 
used the vector gradient function: ∇





u .    This is a little different from the standard scalar 
gradient one finds in a vector calc class.    The scalar gradient operates on a scalar field, such as a 
series of elevations.   It gives the direction of maximum change, so in the case of elevations, the 
scalar gradient tells you the direction downhill.     Since it is giving a direction, that means it is 
taking a bunch of scalar values (a field), and returning a vector.    More formally, if f defines a 

function ( =


( )f f x ), then
∂ ∂ ∂

∇ = + +
∂ ∂ ∂1 2 3

1 2 3

ˆ ˆ ˆf f ff x x x
x x x

.     In the case of a vector function, such 

as 
 

( )u x  that maps a vector to another vector, the gradient of this is a 2nd order tensor.    

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

∇ =  
∂ ∂ ∂ 

 ∂ ∂ ∂
 

∂ ∂ ∂  



 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 2

( )

u u u
x x x
u u u

u x
x x x
u u u
x x x

.    It turns out the gradient of the displacement function defines the 

strain and rotation of the material in question.  I mention this because one will occasionally see 
this used in the derivation of the strain tensor, and if you are thinking this is a scalar gradient it 
will be confusing.

 

 
 

( )
( ) i

i j
j

u x
u x x

x
δ δ

∂
=

∂
  

 
Here we are using ESN; since j is repeated in the left hand side of the above equation, we 
assume summation over j.   In long-hand, the equation is 

 

1 2 3
1 2 3

( ) ( ) ( )
( ) i i i

i
u x u x u x

u x x x x
x x x

δ δ δ δ
∂ ∂ ∂

= + +
∂ ∂ ∂



 
 

There are three of these equations, for i = 1, 2, and 3.    So, we can write it out as 
 

δ
δ δ

δ

 ∂ ∂ ∂
 ∂ ∂ ∂    ∂ ∂ ∂  =    ∂ ∂ ∂     ∂ ∂ ∂
 

∂ ∂ ∂  



1 1 1

1 2 3
1

2 2 2
2

1 2 3
3

3 3 3

1 2 2

( )i

u u u
x x x

x
u u u

u x x
x x x

x
u u u
x x x

. 

 
Before we go any further in using derivatives of the deformation function to define strain and 
rotation, which is our goal, let’s look at some examples to get an intuitive feel for how the 
partial derivatives of u with respect to x affect the shape of a square. 
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Note that the mixed derivatives tend to shear the square, where as the non-mixed derivatives 
stretch it. Note that (c) and (e) in the figure above have non-zero rotation terms.   (c) shows 
simple shear.   None of these figures show pure shear, which is a case in which the volume 
change is 0, there is no rotation, and the body shrinks in one dimension and increases in the 
two other dimensions. 
 

Now, back to the three equations 1 2 3
1 2 3

( ) ( ) ( )
( ) i i i

i
u x u x u x

u x x x x
x x x

δ δ δ δ
∂ ∂ ∂

= + +
∂ ∂ ∂

 .  We can separate 

each equation into two parts: 
 

1 2 3 1 2 3
1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( )1 1
2 2

i i i i i i
i

u x u x u x u x u x u x
u x x x x x x

x x x x x x
δ δ δ δ δ δ δ

   ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

 

 
In ESN, this gives us 

 
( ) ( )1 1

( )
2 2

i i
i j j

j j

u x u x
u x x x

x x
δ δ δ

∂ ∂
= +

∂ ∂
  
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Now add j

i

u
x

∂
∂

to the first part, and subtract it from the second part 

 
1 1
2 2

j ji i
i j j

j i j i

u uu u
u x x

x x x x
δ δ δ

   ∂ ∂∂ ∂
= + + −      ∂ ∂ ∂ ∂   

.

 

 
 We’ll do this in semi-long hand, by writing out the summation for j: 

 
31 2

1 1 2 2 3 3
1 2 3

31 2
1 1 2 2 3 3

1 2 3

1
2

1
2

i i i
i

i i i

i i i

i i i

uu u u u u
u x x x x x x

x x x x x x

uu u u u u
x x x x x x

x x x x x x

δ δ δ δ δ δ δ

δ δ δ δ δ δ

 ∂∂ ∂ ∂ ∂ ∂
= + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂∂ ∂ ∂ ∂ ∂
− + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
In ESN, where summation over the repeated j indices is assumed, the equation becomes 
much simpler (remember there are three equations, for i = 1-3. 
 

1 1
2 2

ij ij

j ji i
i j j

j i j i

e

u uu u
u x x

x x x x

ω

δ δ δ
   ∂ ∂∂ ∂

= + + −      ∂ ∂ ∂ ∂   
 

 

 
Let’s call the first term ije and the 2nd term ijω to get 
 

( )i ij ij ju e xδ ω δ= +  
 
The ije term is the strain tensor.    We’ll write out a few terms 
 
i=1, j=1 

1 1 1
11

1 1 1

1
2

u u u
e

x x x
 ∂ ∂ ∂

= + = ∂ ∂ ∂ 
 

 
i=1, j=2 

1 2
12

2 1

1
2

u u
e

x x
 ∂ ∂

= + ∂ ∂ 
 

 
 

You probably get the idea…. the strain tensor in all its glory looks like this: 
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31 1 2 1

1 2 1 3 1

32 1 2 2

1 2 2 3 2

3 3 31 2

1 3 2 3 3

1 1
2 2

1 1
2 2

1 1
2 2

ij

uu u u u
x x x x x

uu u u u
e

x x x x x

u u uu u
x x x x x

    ∂∂ ∂ ∂ ∂
+ +   ∂ ∂ ∂ ∂ ∂    

    ∂∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ ∂    
 

   ∂ ∂ ∂∂ ∂ + +    ∂ ∂ ∂ ∂ ∂    

 

 
 
In terms of x, y, z axes, we can rewrite the strain tensor to be 
 

1 1
2 2

1 1
2 2

1 1
2 2

yx x x z

y y yx z
ij

yz x z z

uu u u u
x y x z x

u u uu ue
x y y z y

uu u u u
x z y z z

 ∂  ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂   ∂ ∂ = + +   ∂ ∂ ∂ ∂ ∂    
 ∂ ∂ ∂ ∂ ∂  + +   ∂ ∂ ∂ ∂ ∂    

 

 
Note that, just like the stress tensor, the strain tensor is symmetric.   So 

 
ij jie e=  

 
This means there are only six independent components.    Also, like the stress tensor, the 
strain tensor can be rotated into a coordinate system of principle strains.   The strain tensor 
also has similar invariants to the stress tensor (you shouldn’t be surprised at this).    The first 
invariant, the trace of the tensor, is this: 
 

31 2

1 2 3
ii

uu ue u
x x x

θ ∂∂ ∂
= = + + = ∇ •

∂ ∂ ∂
  

 
This quantity is known as the dilatation (i.e. the volumetric change associated with the 
deformation).    The right hand side of the equation notes that the dilatation is equal to the 
divergence of the displacement vector field.    Divergence (which is essentially defined 
above) measures sources and sinks in a vector field.   A complimentary vector calculus 
operator is the curl u∇×



 , which measures the rotation in a vector field.    It turns out, that 
that any vector field can be decomposed entirely into curl and divergence terms.     
 
Anyway, let’s prove that the trace of the strain tensor is the relative volumetric change.   It’s 
actually pretty easy. 
 
In the principle strain coordinate system, where there are no shear strains, the volumetric 
change is represented by the figure below 
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So the volume of this cube after deformation is: 
 

31 2
1 2 3

1 2 3

1 1 1
uu uV V dx dx dx

x x x
     ∂∂ ∂

+ ∆ = + + +    ∂ ∂ ∂     
 

 
 
Multiply this out to get 
 

3 3 3 31 2 1 2 1 2 1 2
1 2 3

1 2 1 2 3 1 3 2 3 1 2 3

1
u u u uu u u u u u u uV V dx dx dx

x x x x x x x x x x x x
 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ ∆ = + + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

 
Which to first order is  
 

31 2
1 2 3

1 2 3

1
V

uu uV V dx dx dx
x x x

θ

 
 ∂∂ ∂

+ ∆ = + + + 
∂ ∂ ∂  

 




 

 
This is just 

( )1V V V
V

V

θ

θ

+ ∆ = +

∆
=
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Hence, to first order, dilatation is just the relative change in volume.    This points out a 
general trait of strain: it describes the relative change in length, not the absolute change in 
length.    This means strain will have units length/length = no units. 
 
 
1.1 Rotation 
We’ve been talking about the strain tensor, eij; but there was another term that describes 
deformation: ωij. 
 
By plugging numbers into the definition for ωij  
 

ji
ij

j i

uu
x x

ω
∂∂

= −
∂ ∂

 

 
it can be seen that ωij has no terms on the diagonal, and the matrix is antisymmetric, which 
means ij jiω ω= − .    This implies there are only three independent terms.    These three 
independent terms can be put into a vector ω , and the ωij tensor defines a  rotation of 
magnitude ω  in the direction of ω , where ω ω ω ω= Ω = + + = ∇×

 


1

223 1 31 2 12 3ˆ ˆ ˆx x x u  
 
So, e defines the strain, and ω the rotation, of a body subjected to a stress, σ.    These are all 
defined in terms of the displacement field, u, which measures how different parts of a 
substance move in response to stress. 
 
In the context of seismology, it will turn out that a change in volume, the divergence of the 
displacement field, propagates through the Earth at the P-wave velocity, and a rotation, the 
curl of the displacement field, propagates at the S-wave velocity. 
 
 
A digression on deformation 
 
So, when a body is subjected to stress, the body undergoes deformations called strains. But, 
how can we calculate the strains when the stress is known? In any given material there is a 
relationship that relates stress and strain, which may be affected by several parameters, such 
as pressure, temperature and strain history. Nearly all earth materials have a ductile flow if 
small, steady stresses are applied for long lengths of time (e.g., diffusion creep). The same 
materials will fail brittlely or plastically if high stresses are applied.  

In seismology and in parts of geodynamics, we are concerned with small-magnitude 
short duration stresses. For small stresses, we see observationally that a linear elastic 
relationship exists between stress and strain.  
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At high strains, deformation behaves plastically, until some eventual brittle failure.  This of 
course depends on material: 
 

 
 
The implication is, for a purely elastic medium, reducing the applied stress in the linear 
elastic regime results in the medium restoring to its original shape. Also note: for perfect 
elasticity there is no energy loss as the material deforms in response to the applied stress. 
 
A digression on reference frames  
We have been discussing infinitesimal strain.    When discussing larger strains, one typically 
has to decide whether the deformation is in respect to the the pre-strained locations.   In this 
case we are using a Lagrangian reference frame.    An alternative approach, is to view things 
in terms of their current locations, the Eulerian reference frame. 
 
2.0 Constitutive Equations 
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This linear elastic relationship between stress and strain is described by a version of Hooke’s 
law.  You’ll recall from freshman physics the 1-D Hooke’s Law applied to, for example a 
spring with a spring constant k, and a mass M: 
 

 
 
The relationship between an applied force F and displacement x due to this force is:  
 

F = -k x . 
 
This is Hooke’s law as you’ve learned it. We will be doing the same thing except for us:  
                 

F ⇒  stress (
Area
F  applied on some plane) 

 
k ⇒  cijkl (the 4th order elastic tensor, which describes elasticity of the medium) 
 
x ⇒  strain (deformation, instead of displacement, due to an applied stress)          
 

 
 
Thus, the Hooke’s law of elastic media – i.e., the relationship between the stress and strain 
tensors – is: 

σ =ij ijkl klc e  
 

 So, let’s look further at the elastic tensor. First, recall repeated index notation. Again, a 
repeated index in a product indicates the sum is to be taken as the index varies from 1 to 3, 
e.g., (recall from last time, the dot product) 

 

=

⋅ = ⋅

+ +

∑
3

1

1 1 2 2 3 3

i i i i
i

x y x y

x y x y x y
 

 
Applying this to our Hooke’s law, we have: 
 

σ

= =

=

= ∑∑
3 3

1 1

ij ijkl kl

ijkl kl
k l

c e

c e
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and so on. Let’s look at just one term, say σ11 : 
 

σ = + + +
+ + +
+ +

11 1111 11 1112 12 1113 13

1121 21 1122 22 1123 23

1131 31 1132 32 1133 33

c e c e c e
c e c e c e
c e c e c e

 

        
 
We have 8 more such equations for: 

 
σ12  
σ13  
σ21  
σ22  
σ23                 each with 9 cijkl terms. 
σ31  
σ32  
σ33 

           
 

Adding these up, we have 9 equations, each with 9 cijk1 terms, thus 9 x 9 = 81 terms.  
 
2.1  Symmetry 
But, recall our previous discussions about our medium not rotating, which gave:  

 
σij = σji  ⇒  6 independent σ terms 
 ekl = elk ⇒  6 independent e terms. 

 
Because of this, the elastic tensor ijklc can be reduced to 6 x 6 = 36 independent terms, since 
 

=ijkl jiklc c  
and 

=ijkl ijlkc c . 
 
 
There also exists another symmetry relation from a thermodynamic consideration of a strain 
energy density function, which results in: 
 

=ijkl klijc c . 
 

This leaves us with only 21 independent terms, and this is the most general form of the                             
elasticity tensor for elastic media.  
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2.2  Isotropy 
 
If we assume that our medium is isotropic (i.e., the elastic properties of our medium are 
independent of direction or orientation of our material) then we can show that the elastic 
tensor has only two independent parameters, i.e., elastic moduli.  This is the greatest 
reduction in the number of elastic constants.   For sure, at very large scales, the Earth’s 
interior is, to first order, isotropic, although there are regions within the Earth that are not. 
The cijkl‘s for isotropic material can be defined in a number of ways, but a useful one is with 
Lamé constants.  The Lamé constants are defined in terms of the ijklc : 
 

λδ δ µ δ δ δ δ= + +( )ijkl ij kl ik jl il jkc  
 

Thus we can rewrite Hooke’s law for an isotropic elastic solid (σ =ij ijkl klc e ) as: 
 

σ λ δ µ
λθδ µ

= +

= +

2

2
ij kk ij ij

ij ij

e e

e
 

 
where θ  is the dilatation: 
 

θ =
≡ ( )

ii

ij

e
Tr e

 

      
 

                31 2

1 2 3

uu u
x x x

∂∂ ∂
= + +

∂ ∂ ∂
   

u= ∇ ⋅


 
 
We can spell out the equation at the top of the page, for an elastic isotropic solid as: 
 

σ λ µ
σ λ µ
σ λ µ
σ µ σ
σ µ σ
σ µ σ

= + + +
= + + +
= + + +
= =
= =
= =

11 11 22 33 11

22 11 22 33 22

33 11 22 33 33

12 12 21

13 13 31

23 23 32

( ) 2
( ) 2
( ) 2

2
2
2

e e e e
e e e e
e e e e
e
e
e

 

 
λ does not have a straight-forward physical interpretation.   µ, on the other hand, is the shear 
modulus or rigidity, and represents a material’s shear strength. Another very important elastic 
constant is the incompressibility, or bulk modulus, K, which is related to the volume change 
due to pressure or compression.  It can be defined in terms of λ and µ: 
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2
3

K λ µ= + . 

 
K is the inverse of the volume change with pressure.   So, something squishy that gets 
compressed readily with increasing pressure will have a low K.    More quantitatively:  

 
1

K
dP
dθ

=
−

 

 
Two other important parameters are Young’s modulus, the ratio of tensional stress to the 
resulting extensional strain, and Poisson’s ratio, which gives the ratio of the contraction 
along two axes to the extension along the third axis where tension is applied.  Here is a series 
of relationships between most well-known moduli, from Stein and Wysession’s seismology 
book, Box 2.3-1 (pg. 51): 
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