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Field Broadband Seismic Data Needs

WAVEFORMS
and

TIMING
!!!!!



Field Broadband Seismic System Needs

Scientific Needs
•Waveforms: Good sensors (broad or intermediate band; 

simple and uniform response)

• Timing: Good clocks (high-precision timing; timing 
corrections easily handled within digitizing system)

Field Needs
•Robustness: Equipment can handle broad range of 

operating environments

• Simplicity: Deployment and servicing/maintenance are 
straightforward, problem-free, and safe



“Integrated observational system of systems” ($200 million)
SAFOD: 3.1 km borehole into the San Andreas Fault
PBO: 1099 geodetic stations; 81 strainmeter/seismic stations
USArray: 2605 seismic and 30 magnetotelluric stations
Topographic imaging: 1000s of km2 high resolution topography/InSAR swaths
Geochronology: Age dating of wide range of rocks

EarthScope: Instrumentation



• Natural source 
experiment 
operated from 
Jan. 2006 to 
Sept. 2009

• 118 total 
broadband 
sites occupied

• Active source 
experiment 
included 
~3,000 
geophones 
and 15 1-ton 
shots in Fall 
2008
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• Thin areas
• High Lava Plains (~28 km)

• Great Basin (~30 km)

• Thick areas
• Cascades (~50 km)

• Idaho Batholith

• Owyhee Plateau (~42 km)

• Modoc Plateau

• Sharp transitions
• Cascades - HLP

• HLP - Owyhee Plateau

• Blue Mt. - Idaho Batholith

High Lava Plains Crustal Thickness

Eagar et al., JGR, 2011
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•High velocities 
beneath cratonic 
North America

• Low velocities 
beneath central 
Oregon and SRP/Y

•Central Nevada 
anomaly

Mantle 
Tomography

Roth et al., GRL, 2008; 
James et al., submitted to EPSL, 2011



Complex Mantle 
Structure Beneath 
Snake River Plain / 
Yellowstone System
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SKS Splitting 
Beneath the 
Western U.S.

•Clear, broad-scale 
regional similarities over 
100’s of km

• Large splitting times 
across most of region 

•Significant complexity 
over shorter spatial 
scales in some regions

•Very small splitting 
times beneath Great 
Basin
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Volcanism

Shear Wave Splitting

Heat Flow

Tomography

Splitting time
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Mantle Drip 
Beneath the 
Great Basin

•Region of small splitting times 
correlates with:

• Very limited post-10My volcanism

• Regionally low heat flow

• Cylinder of increased seismic 
velocities tilted to NE

•Consistent with models of a 
mantle drip

West et al.,
Nature Geoscience, 2009



Standard Vault Design

Courtesy John West
http://www.anisotropy.net/StationDesign/Images/SiteLayout_full.jpg



Huddle Test



Digging the Sensor Vault: Riley Butte



Digging the Sensor Vault: Riley Butte



Typical Field Crew Housing



Mixing 
Concrete for 
the Sensor 

Vault















Seismometer Installation: Hammond Ranch



Duct Tape 
and Cable 

Ties 
Required



Building the Fence: John Day (Holliday Ranch)



Installed Site





PI Perspective: Present & Future
• Systems are robust and get us the data we need - the 

primary outcome of the “broadband revolution”

• System design and components havenʼt changed 
significantly in 25+ years (except GPS timing)

• Time to strongly consider the next “revolution”

• Q: How can we collect similarly high-quality data while 
reducing time and risk/exposure to crews?

• A: Canʼt simply continue to develop minor upgrades to 
equipment and retrofit existing gear to work in harsh 
environments



Thoughts on Future Wants and Needs
•Reduce power requirements
• Solar power: reduce panel footprint or eliminate

• Simplify the deployment process
• Sensor (installation; smaller form factor and footprint)

• Datalogger/digitizer/timing

• Improve servicing strategies (time, $$$, safety)
• Telemetry: State of Health; data samples

• Robotic data retrieval

• Feasible for broad range of conditions (environmental; 
across political boundaries)



Planetary Microseismometer
• Developed by Prof. Hongyu Yu (ASU)
• Molecular Electronic Transducer (MET) 

technology
• Useful technology for a range of inertial 

sensors

• Specialized electrolytic cell

• Measure hydrodynamic motion at surface 
of electrodes positioned on surface of 
electrochemical cells 

• Can use a range of electrolyte chemistries

• Currently developing MEMS-sized sensing 
cell fabrication technology through NASA 
PIDDP grant

• Industry partner: MET Tech, Inc.
Sketch of MET Sensing Cell

MET sensing cell



Alberto Behar, PhD 8

Geodetic Data via NetRS to SBD Iridium
4 units built (3 Greenland, 1 Antarctica)

 Streams GPS position data (BINEX open format) from a Trimble NetRS to 
a microcontroller + Iridium modem that sends data through the Iridium 
Network to an operations base where it is repackaged to look like the 
original stream 

 Remote Unit Configuration:
– Records position every 30 sec, 35kb/hour
– 7200 epochs/day, (100-220bytes/epoch) ~1mbyte/day
– Download/receive frequency: Every 4-5 mins.
– Receiver and Format: Trimble NetRS in BINEX, 9600bps
– Connection Method: Iridium Modem, LBT9522 with DOD Sim card

 Operations base Details:
– PC Computer located at UNAVCO, Boulder, Colorado 
– Communication with Iridium Network is via TCP/IP 

       Direct IP Sockets.
– Runs a Linux simple application (shell script) that

       reassembles the data into 24hr UTC break files. 

O



Field deployment: Volcano Monitor

A-D converter

Sulfur dioxide detector

Iridium modem

Time chip

BASIC Stamp
USB connection

Humidity sensor

Antenna

Air intake

Air pump

Air exhaust

- Deployment: two units deployed on Kilauea 
Volcano, Hawai’i (volcanic gas detection) running 
since November 2007

- Weight: <4 kg

-  Data collected every hour (normal mode)

- “Burst mode” = collection every min/10 mins

- 1 year lifetime (normal mode)

- expendable units

- Data being used by HVO

- Data being used by US Park Service (Volcanoes 
National Park) for assessing environmental 
conditions in the Park

Liquid crystal display

Lithium batteries

Courtesy Alberto Behar, ASU



UAV “Data Mule”

• Developed by Prof. Sri Saripalli (ASU)
• 400 gm Unmanned Aerial Vehicle (UAV)
• Includes navigation computer, GPS, 10 Mp camera
• 40 mph flight speed

• 1.5 kg payload capacity
• $1,000 per vehicle

!



!

ASU UAV “Data Mule”

• Data mule flies to remote site based on flight plan or 
automatic navigation

• Can be tasked to “loiter” at specific waypoints

• Design is to fly to site, make contact with ground 
recording system, loiter during WiFi data transfer

Images at 300 m AGL Loiter radius: 100m
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